Борис Николаевич Малиновский - История вычислительной техники в лицах

История вычислительной техники в лицах   (скачать) - Борис Николаевич Малиновский


Малиновский Б Н
История вычислительной техники в лицах

Международный благотворительный фонд истории и развития компьютерной науки и техники, автор книги выражают признательность спонсорам книги:

Президиуму Национальной академии наук Украины (президент академии Б.Е. Патон),

Государственному инновационному фонду Украины (председатель фонда В.С. Лысенко),

Институту кибернетики им. В.М. Глушкова НАН Украины (директор В.С. Михалевич),

Совместному учебно-производственному центру КПИ и АО «Нова» (директор В. И. Маханьков),

Агенству недвижимости «ЯНУС» (генеральный директор О. И. Охтень), Ротари-клубу г. Киева, его членам:

— президенту корпорации ИТО А. Д. Савченко,

— генеральному директору Ассоциации «Укртелеком» и президенту фирмы «Зинивит» Ю. М. Зелинскому,

— директору фирмы «Фортуна Консалтинг» А. Г. Коженкину,

— правлению акционерного общества МТБ (председатель Е. Н. Дубровский),

— правлению акционерного общества «Киев-оптима» (председатель М. В. Празян),

— совету акционерного общества «Центр внедрения информационных технологий» (председатель С. В. Адаменко),

— а также руководителям фирмы «Компьютерные интеллектуальные технологии» С. С. Забаре и Л. Р. Исмагиловой за их большую помощь в издании этой книги.


Вместо предисловия

Президент Национальной академии наук Украины Б.Е.Патон

История науки, техники, культуры, изложенная в научных трудах, была бы не такой яркой, интересной и полной, если бы не дополнялась воспоминаниями выдающихся современников, во многом определявших развитие событий своего времени.

К сожалению, лишь немногие из них находят возможность написать о себе, своей жизни и творчестве: не хватает времени, другим мешает скромность либо уверенность, что результаты творчества скажут сами за себя; вносит свою лепту и секретность — требуется время, чтобы можно было говорить или писать об участии в закрытых работах.

Создатели компьютерной науки и техники в Советском Союзе оказались в этой категории людей: ни один из них не опубликовал мемуаров. Воспоминания современников о них скудны и недоступны широкому читателю. Скромные комнаты-музеи в учреждениях, где они работали, постепенно лишаются экспонатов и внимания. Единственным местом, где имеется экспозиция о творцах первых ЭВМ, оказался Политехнический музей в Москве.

В настоящее время еще есть возможность восстановить и сохранить для истории образы замечательных творцов цифровой вычислительной техники, рассказать о выдающихся достижениях руководимых ими коллективов. Это не столько возможность, сколько долг и необходимость. «Жалкий народ, для которого не существует прошедшего», — справедливо говорил Пушкин.

Героическая эпопея становления цифровой вычислительной техники в трудные послевоенные годы является достоянием всех стран СНГ. Феномен тех лет заключается в появлении именно в то время воистину уникального многонационального созвездия ученых, обеспечивших успешное освоение космоса, атомной энергии, развиmue ракетостроения, создание цифровых электронных вычислительных машин. Последнее важно подчеркнуть, поскольку выполнение крупнейших проектов И.В. Курчатова, С.П. Королева, М.П. Келдыша было бы невозможно без своевременной разработки ЭВM.

Их создание в трудные послевоенные годы — еще один героический пример служения науке, своему народу, неотъемлемая часть послевоенного ренессанса, не нашедшая, к сожалению, должного отражения в исторической литературе. Книга «История вычислительной техники в лицах» восполняет этот пробел. Ее автор — известный ученый в области вычислительной техники, свидетель и участник самых первых шагов ее становления и развития, имел счастливую возможность видеть и слышать замечательных ученых, о которых пишет в книге. По существу она является антологией становления и развития цифровой электронной вычислительной техники, охватывающей 50-е и 60-е годы нашего века. Насколько мне известно, это первая заслуживающая всяческого одобрения попытка обстоятельно рассказать о жизни и творчестве первосоздателей цифровой электронной вычислительной техники в СССР. Первая в континентальной Европе ЭВМ была создана в Киеве в Национальной академии наук Украины под руководством академика СА. Лебедева. Еще в те годы ученый предлагал своим ученикам подготовить и опубликовать материалы о становлении и развитии вычислительной техники в СССР. «На Западе о нас думают хуже, чем мы есть. Это надо исправлять», — говорил он. К сожалению, его замысел не был своевременно осуществлен и только сейчас нашел реальное воплощение в этой книге. Приятно отметить, что она подготовлена в стенах Национальной академии наук Украины, ученые которой стояли у колыбели зарождавшейся цифровой электронной вычислительной техники.




Первый заместитель председателя Комитета при Президенте Российской Федерации по политике информатизации В.В. Корчагин.


Уверен, что книга «История вычислительной техники в лицах» не останется незамеченной читателями, тем более, специалистами в области вычислительной техники и информатики и, конечно, историками науки.

Освещаемый в ней период становления отечественной электронной цифровой вычислительной техники замечателен тем, что в эти годы Советский Союз был одним из лидеров мирового компьютеростроения, о чем, к сожалению, сегодня мало известно.

Основное внимание уделяется научным школам того времени, основателями которых были С.А. Лебедев, И.С. Брук, В.М. Глушков и Б.И. Рамеев. Рассказывается также и о ряде разработок уникальных машин и их создателях — единственной в мире троичной ЭВМ (Н.П. Брусенцов), ЭВМ с использованием системы счисления в остатках (И.Я. Акушский), первой мини-ЭВМ о становлении отечественной компьютерной промышленности.

В книге впервые изложена история создания вычислительной техники как общего (гражданского) назначения, так и секретных некогда ЭВМ и комплексов на их основе для так называемых «специальных систем», в том числе космических, противоракетной и противовоздушной обороны и др., построение которых предотвратило в послевоенные годы сползание от «холодной войны» к новому мировому конфликту. Много внимания уделено выдающимся ученым Н.Я. Матюхину и М.А. Карцеву, работавшим в ihk рытых организациях и потому обойденных вниманием открытой печати прежних лет.

Уникальные архивные материалы, связанные с разработкой первых ЭВМ, обширный иллюстративный материал, воспоминания современников, биографические сведения, оттеняющие неординарность характеров и необычность судеб ученых, создают яркую и Достоверную картину событий почти полувековой давности. Пыделены исторически и приоритетно важные работы и даты. Имеете с тем эта книга — своеобразный взгляд в прошлое — позволяет понять причины быстрого первоначального развития вычислительной техники, а также, что не менее важно, ошибки и просчеты, допущенные в то время.

Быстро растущие потребности в средствах автоматизации интеллектуального труда привели к стремительному развитию компьютерной науки и техники, к превращению цифровых электронных вычислительных машин в главный инструмент, облегчающий труд ученого, инженера, медика, руководителей всех рангов. ЭВМ стали неотъемлемой частью систем управления в народном хозяйстве и военной области. На их основе создаются сети обмена информацией, обеспечивающие высокую степень информированности во всех сферах человеческой деятельности. Это, в свою очередь, создает новые импульсы для развития научно-технического прогресса и совершенствования ЭВМ. Оно идет по пути создания высокоинтеллектуальных средств обработки информации, возможности которых могут превзойти самые смелые предвидения писателей-фантастов.

Хотелось, чтобы книга Б.Н. Малиновского послужила началом серии книг о становлении и дальнейшем развитии вычислительной техники, ее важнейших применениях и роли информатики в жизни общества.

Среди ученых, о которых говорится в книге, люди разных национальностей — русской, украинской, белорусской, татарской, еврейской, греческой. Это еще раз подтверждает — истинная наука наднациональна и понятие «дружба народов» для нее — отнюдь не пустой звук. Надеюсь, что книга члена-корреспондента Национальной академии наук Украины Б.Н. Малиновского вызовет интерес в странах СНГ и будет достойно оценена на Западе, где сведения о периоде становления цифровой электронной вычислителъной техники в СССР ограничены немногими краткими и неполными обзорами техники тех лет.



От автора

Борис Николаевич Малиновский родился 24 августа 1921 г. в Ивановской области в семье учителя. Известный специалист в области вычислительной техники, член-корреспондент Национальной академии наук Украины, лауреат Государственной премии Украины. Участник Великой Отечественной войны. Прошел боевой путь от солдата до командира артиллерийской батареи. Дважды ранен. Награжден пятью орденами.

В 1835 году английский ученый Чарльз Беббидж, завершая работу над проектом вычислительной машины, которую он назвал аналитической, в письме на имя президента Королевской академии наук в Брюсселе писал: «Я сам удивляюсь могуществу составляемой мной машины».

Ученый имел в виду область вычислений. Предвидеть другие применения своего детища он не мог по простой причине машина Беббиджа хотя и была по принципам построения и имевшимся в ней устройствам подобна появившимся более века спустя цифровым электронным вычислительным машинам, но оставалась механической. Это превращало ее в огромное скопище зубчатых колес, рычагов и других деталей, привести в движение которые мог лишь паровой двигатель. Гениальный ученый опередил время. Ему пришлось отказаться от мысли построить действующую машину. Великое изобретение было забыто. О нем вспомнили более чем через сто лет, когда была создана цифровая электронная вычислительная машина с программным управлением ЭНИАК (Мочли и Экерт, США, 1946 г.).

Вторая половина нашего века подарила человечеству целый фейерверк замечательных достижений в области цифровой электронной вычислительной техники. Ее становление и развитие шло необыкновенно быстрыми темпами. Кем-то образно сказано: если бы летательные аппараты совершенствовались так же быстро, как развивались ЭВМ, то через две недели после полета братьев Райт человек мог бы полететь на Луну.

Такие грандиозные темпы развития объясняются громадной потребностью современного человеческого общества в мощных технических средствах автоматизации интеллектуального труда, связанного в первую очередь с обработкой информации.

В настоящее время информация стала своеобразным «сырьем» для производства множества «продуктов»: новых знаний, управленческих решений, научных прогнозов, статистических сведений, всевозможных рекомендаций, заключений и т. д. и т. п. Небезынтересно отметить, что в отличие от физического сырья (полезных ископаемых и др.) информация по мере использования (обработки) не только не исчезает, но наоборот, пополняется новой, являя собой постоянно расширяющуюся «сырьевую» базу интеллектуального труда.

Современными успехами компьютеризации и информатизации мировое сообщество обязано миллионам труженников — ученым, инженерам, рабочим, создавшим современные ЭВМ, их программное обеспечение, мощные информационные сети.

Однако тех, кто закладывал фундамент компьютерной науки и техники, было не так уж много. На их долю выпало самое трудное — создать то, чего еще никогда не было. Среди них были ученые, инженеры и математики многих стран. Вторая мировая и последовавшая за ней «холодная» войны привели к разобщению ученых и секретности работ, поскольку ЭВМ создавались в первую очередь в военных целях.

В результате первое время имена творцов вычислительной техники были известны лишь специалистам.

В зарубежной литературе появившийся вначале пробел в истории развития цифровой электронной вычислительной техники в странах Западной Европы и США уже исправлен. (См, например, прекрасно изданную книгу «Знакомьтесь: компьютер». Пер. с англ, под ред. ИМ. Курочкина. — М, 1989 г.)

В СССР этот процесс затянулся. «Перестройка» и образование СНГ не способствовали его завершению, скорее наоборот.

Автор имел счастье быть свидетелем и участником становления и развития цифровой электронной вычислительной техники в СССР, общался с выдающимися учеными в этой области: С.А. Лебедевым, А.А. Дородницыным, И.С. Бруком, Ю.Л. Базилевским, В.M. Глушковым, Б.И. Рамеевым, IUL Манохиным, М.А. Карцевым, И.Л. Акушским, Г.Л. Лопато, MJC Сулимом, П.П. Брусенцовым, В.А. Мельниковым, В.C. Бурцевым и др.

В трудное послевоенное время усилия этих людей и коллективов, в которых они работали, вывели СССР в число мировых лидеров компьютеростроения. К великому сожалению, в годы застоя лидерство было утеряно. Вряд ли можно обвинять в этом учеников, сменивших своих славных учителей. Сегодня уже очевидно, что на то были более несомые причины. Вместе с тем следует признать, что основоположники вычислительной техники были поистине замечательными людьми, и достигнутые ими успехи явились в значительной степени следствием их блистательных творческих способностей, высоких человеческих качеств и понимания огромной роли новых технических средств в развитии человеческого общества.

Разработка ЭВМ в трудные послевоенные годы, в кратчайшие сроки была подвигом, и он достоин памяти так же, как и великие достижения it области создания спутников, ракет, атомных реакторов, о чем много творилось и писалось (без упоминания об огромной роли ЭВМ в выполнении этих работ).

Тому, кто не был свидетелем первых шагов зарождавшейся цифровой электронной вычислительной техники, следует напомнить, что в отличие от обычных для того времени радиотехнических устройств, самые сложные из которых насчитывали десяток-другой электронных ламп, при переходе к ЭВМ счет пошел на тысячи. Даже если не вдумываться о стоимости только электронных ламп и многих тысяч радиодеталей (конденсаторов, сопротивлений и др.), то уже само их размещение на громоздких щитах и в металлических шкафах становилось проблемой. Первые ЭВМ занимали просторные залы и выглядели так, как смотрятся сейчас громадные, многометровой длины пульты управления крупными энергоблоками или энергосистемами.

Требовался громадный инженерный опыт, чтобы быть уверенным в возможности слаженной работы такого количества радиоламп, сопротивлений, конденсаторов, соединенных сотнями тысяч паек и разъемных контактов. Только у одной лампы восемь ножек для подключения в электрическую схему! А если их тысячи? Не случайно постройка ЭВМ в те времена воспринималась большинством авторитетных специалистов как безумство или безграмотная техническая авантюра. Возможно, именно отсюда появилось недоверие к новой науке — кибернетике, взявшей на вооружение цифровую вычислительную технику. Уж очень далеки были первые ЭВМ от огромных возможностей человеческого мозга

Нашим молодым современникам, вооруженным изящными персоналками, трудно поверить, что те многотонные динозавры из многих тысяч ламп аппетитом в десятки киловатт, которые своим появлением на рубеже 50-х годов открывали эру современной вычислительной техники, сооружали совсем небольшие, как правило, молодежные коллективы, причем в очень короткие сроки. Царившая в них атмосфера созидания (а не простого повторения кем-то чего-то достигнутого, что характерно для последующих лет) творила чудеса!

Утвердившийся сейчас дух материальной заинтересованности заменяло огромное счастье созидать новые фантастически перспективные технические средства, возможность видеть зримые и очень весомые плоды своего труда, страстное желание опередить соперников.

Несмотря на огромные человеческие и материальные потери в годы Великой Отечественной войны, для первых десятилетий после ее окончания характерен огромный всплеск энергии и энтузиазма среди населения СССР. Советский Союз в те годы по темпам развития опережал все страны мира, за исключением Японии. Молодежь и зрелые специалисты, пришедшие в науку после тяжелых испытаний на фронте и в тылу, трудились с огромной самоотдачей, подстать замечательным руководителям научных коллективов, таким как С.А. Лебедев, И.С. Брук, Б.И. Рамеев, В.М. Глушков и др.

Следует отметить, что становление и развитие вычислительной техники в СССР шло в послевоенные годы в условиях отсутствия контактов с учеными Запада: разработка ЭВМ за рубежом велась в условиях секретности, поскольку первые цифровые электронные машины предназначались, в первую очередь, для военных целей.

Вычислительная техника в СССР в этот период шла своим собственным путем, опираясь на выдающиеся научные результаты отечественных ученых.

С именами основоположников цифровой электронной вычислительной техники связаны исторически важные события:

— организация первой в СССР вычислительной лаборатории, прообраза будущих вычислительных центров (И.Я. Акушский, 1941);

— разработка первого в СССР проекта цифровой электронной вычислительной машины (И.С. Брук, Б.И. Рамеев, август 1948 г.);

— обоснование принципов построения ЭВМ с хранимой в памяти программой, независимо от Джона фон Неймана (СА. Лебедев, октябрь-декабрь 1948 г.);

— регистрация первого в СССР свидетельства об изобретении цифровой ЭВМ (И.С. Брук, Б.И. Рамеев, декабрь 1948 г.); — первый пробный пуск макета малой электронной счетной машины МЭСМ (С.А. Лебедев, ноябрь 1950 г.);

— приемка Государственной комиссией МЭСМ — первой в СССР и континентальной Европе ЭВМ, запущенной в регулярную эксплуатацию (С.А. Лебедев, декабрь 1951 г.);

— завершение отладки и запуск в эксплуатацию первой в Российской федерации ЭВМ М-1 (ИС. Брук, Н.Я. Матюхин, январь 1952 г.); — выпуск первых в СССР промышленных образцов ЭВМ (Ю.Я. Ба-зилевский, Б.И. Рамеев, 1953 г., ЭВМ «Стрела»);

— создание самых производительных в Европе (на момент ввода в эксплуатацию) быстродействующих электронных вычислительных машин: БЭСМ (апрель 1953 г.), М-20 (1958 г.) и БЭСМ-6 (1967 г.) С.А. Лебедев, (М.К. Сулим, ВА. Мельников);

— ввод в эксплуатацию СЭСМ — первого в Союзе матрично-векторного процессора (СА Лебедев, ЗЛ. Рабинович, январь 1955 г.);

— разработка первых в СССР универсальных ЭВМ общего назначения «Урал-7», «Урал-2», «Урал-3», «Урал-4» (Б.И. Рамеев, 50-е гг.);

— создание первого в Советском Союзе семейства программно и конструктивно совместимых универсальных ЭВМ общего назначения «Урал-11», «Урал-14», «Урал-16» (Б.И. Рамеев, В.И. Бурков, А.С. Горшков, 60-е гг.);

— разработка и серийный выпуск первых в СССР малых универсальных ЭВМ М-3 и «Минск-1» (И.С. Брук, Н.Я. Матюхин, Г.П. Ло-пато — 1956–1960 гг.);

— создание первой и единственной в мире троичной ЭВМ «Сетунь» (П. П. Брусенцов, 1958 г.);

— создание первой (и, вероятно, единственной в мире) суперпроизводительной специализированной ЭВМ с использованием системы счисления в остатках (И.Я. Акушский, 1958 г.);

— разработка теории цифровых автоматов (В.М. Глушков, 1961 г.);

— предложена идея схемной реализации языков высокого уровня (В.М. Глушков, ЗЛ. Рабинович, 1966 г.);

— разработка первых в СССР машин для инженерных расчетов «Промшь» и МИР — предвестников будущих персональных ЭВМ (В.М. Глушков, С. Б. Погребинский, 1959–1965 гг.);

— создание первой в СССР полупроводникдвой управляющей машины широкого назначения «Днепр» (В.М. Глушков, Б.Н. Малиновский, I960 г.);

— применение впервые в СССР микропрограммного управления в ЭВМ (Н.Я. Матюхин, ЭВМ «Тетива», 1961 г.);

— создание первой в СССР (и, возможно, единственной в мире) ЭВМ < использованием только прямых кодов операндов (Н.Я. Матюхин, ЭВМ «Тетива», 1961 г.);

— выдвижение впервые в СССР идеи многопроцессорной системы (C. А. Лебедев, 1956 г.);

— высказана идея мозгоподобных структур ЭВМ (В.М. Глушков, 1461 г.);

— первое в СССР использование виртуальной памяти и асинхронной конвейерной структуры ЭВМ (СА. Лебедев, БЭСМ-6, 1967 г.);

— предложены принципы построения рекурсивной (не неймановской) ЭВМ (В.М. Глушков, В.А. Мясников, И. Б. Игнатьев, 1974 г.); — реализация первой в мире многоформатной векторной структуры ЭВМ (М.Л. Карцев, ЭВМ М-10, 1974 г.);

— впервые в мире предложена и реализована концепция полностью параллельной вычислительной системы — с распараллеливанием на всех четырех уровнях: программ, команд, данных и слов (М.Л. Карцев, вычислительные комплексы на базе ЭВМ М-10, 70-е гг.);

— создан первый в СССР мобильный управляющий многопроцессорный комплекс на интегральных схемах с автоматическим резервированием на уровне модулей, производительностью 1,5 млн. операций в секунду (СЛ. Лебедев, В.С. Бурцев, ЭВМ 5Э26, 1978 г.);

— разработан проект первой в СССР векторно-конвейерной ЭВМ (М.А. Карцев, ЭВМ М-13, 1978 г.).

Это лишь главные результаты основных научных школ, руководимых С.А. Лебедевым, Б.И. Рамеевым, И.С. Бруком, В.М. Глушковым, возникших в годы становления цифровой электронной вычислительной техники и выполнивших разработку основных классов ЭВМ того времени.

Научная школа СА. Лебедева обеспечила создание наиболее сложного класса средств вычислительной техники — супер-ЭВМ, в том числе машин специального назначения. Пензенская научная школа, возглавляемая Б.И. Рамеевым, последовательно и весьма успешно решала задачу создания универсальных ЭВМ общего назначения. Научная школа И.С. Брука вела разработку малых и управляющих ЭВМ. Позднее работы учеников И.С. Брука вышли за эти рамки, — добавились исследования в области мощных специализированных ЭВМ (М.А. Карцев, Н.Я. Матюхин) и теории ЭВМ (М.А. Карцев). Научная школа В.М. Глушкова получила широкую известность благодаря исследованиям в области цифровых автоматов, систем проектирования ЭВМ, теории и практики построения ЭВМ для инженерных расчетов, машин с высоким внутренним интеллектом и управляющих машин.

Помимо «классических» средств вычислительной техники, разработанных коллективами упомянутых научных школ, в эти же годы были созданы уникальные, практически единственные в мире троичная ЭВМ «Сетунь» (Н.П. Брусенцов) и ЭВМ на основе системы счисления в остатках (И.Я. Акушский).

Был также выполнен ряд других разработок в области универсальных, бортовых и др. ЭВМ под руководством крупных специалистов тех лет (В.С Полин, В.К. Левин, С.А. Майоров, В.Б. Смолов, А.М. Ларионов, Б.М. Каган, Я.А. Хетагуров и др.), однако описание их выходит за рамки этой книги. Не вошли в нее и очень важные вопросы программного обеспечения ЭВМ. В этой области работал целый ряд крупных ученых (А.А. Ляпунов, М.Р. Шура-Бура, А.П. Ершов, В.М. Курочкин, ЕЛ. Ющенко и др.), о жизни и творчестве которых — будем надеяться — еще напишут другие авторы.

Одновременно с ЭВМ для вычислительных центров в СССР разрабатывались машины для построения оборонительных систем.

«Холодная война» привела к необходимости создания эффективной системы предупреждения о ракетном нападении (СПРН) и наблюдения за космическим пространством, систем противоракетной и противовоздушной обороны (ПРО и ПВО, соответственно).

Машины для СПРН разрабатывались под руководством М.А. Карцева, для системы ПРО — под руководством С.А. Лебедева, для системы ПВО — под руководством Н.Я. Матюхина.

В книге впервые (если не считать нескольких газетных публикаций) освещается огромная работа, выполненная этими учеными и руководимыми ими коллективами, связанная с созданием ЭВМ для систем военного назначения, ставших важной частью оборонного комплекса, позволившего добиться паритета между СССР и США, что стало существенным сдерживающим фактором в перерастании «холодной» войны в горячую.

Основной материал книги посвящен жизни и творчеству основоположника цифровой электронной вычислительной техники в СССР СА. Лебедева, пионеру разработок в этой области И.С. Бруку, главному конструктору универсальных ЭВМ общего назначения БЛ. Рамееву, руководителям работ по созданию ЭВМ для СПРН и ПВО МА. Карцеву и Н.Я. Матюхину, выдающемуся математику и кибернетику В.М. Глушкову, основоположнику работ по созданию ЭВМ в остаточных классах И.Я Акушскому, творцу троичной ЭВМ H.IL Брусенцову, главному конструктору малых ЭВМ ГЛ. Лопато, пионеру микроэлектроники ФГ. Ста-росу, организатору компьютерной промышленности MJC. Сулиму.

Большие достижения этих ученых и руководимых ими коллективов отмечены высокими правительственными наградами, в том числе знаниями Героев социалистического труда (С.А. Лебедев, В.М. Глушков, Ю.Я. Базилевский), орденами, Государственными премиями, академическими званиями (для большинства) и др. Вместе с тем, жизнь и творчество этих людей воплотили в себе многие иные события и особенности эпохи: притеснения в период сталинских репрессий <1>.И. Рамеев, Н.Я. Матюхин), участие в боевых действиях в годы Великой Отечественной войны (М.А. Карцев, М.К. Сулим, Б.И. Рамеев); жизнь в эвакуации и напряженный труд по созданию военной техники для фронта (СА. Лебедев, И.С. Брук); фашистская оккупация (В.М.Глушков); мс всегда объективная оценка и поддержка выдающихся талантов административной элитой (М.А. Карцев, Б.И. Рамеев); ограничения в карьере по причине беспартийности (Б.И. Рамеев, И.С. Брук); жесткий контроль работ, включенных в государственные планы (С.А. Лебедев, II. Я. Матюхин, МА. Карцев); неприятие инициативных (даже высоко-значимых, но внеплановых) результатов научных исследований <И.С. Брук, Н.П. Брусенцов); использование зарубежных ученых коммунистов в интересах СССР (Ф.Г. Старое); недооценка роли научного предвидения при принятии административных решений (СА. Лебедев, Б.И. Рамеев, В.М. Глушков). Биографии ученых словно сфокусировали н себе главные особенности эпохи.

Замысел написать книгу о них и первых ЭВМ, ими созданных, возник у меня совершенно случайно. Этому помог… инфаркт. Отключившись таким образом на несколько месяцев от обязанностей заведующего отделом в Институте кибернетики им. В.М. Глушкова АН Украины (здесь и далее употребляется аббревиатура АН, существовавшая до 1944 г.) где проработал почти сорок лет, и желая отвлечься от мыслей о болезни, я попытался кратко описать историю создания первой в Украине и в бывшем Советском Союзе полупроводниковой управляющей машины широкого назначения УМШН, получившей при серийном выпуске название «Днепр», как проектировались на ее основе первые i истомы автоматизации промышленных объектов и Сложных научных экспериментов, как создавались первые микропроцессорные средства вычислительной техники, рассказать о других исследованиях Института кибернетики им. В.М. Глушкова, в которых мне пришлось участвовать, о влиянии работ института на процессы информатизации и компьютеризации на Украине.

Выздоровев, я решил не ограничиваться этим и стал собирать материалы о других полузабытых событиях становления и развития вычислительной техники, о, жизни и деятельности создававших ее выдающихся ученых. Я имел возможность из первых рук получать материалы и разъяснения по многим вопросам, а также архивные документы и богатый иллюстративный материал. К сожалению, многие ветераны вычислительной техники ушли из жизни… В этих случаях пришлось ограничиться воспоминаниями их учеников, сотрудников, близких родственников и своими собственными. Исключительно ценные материалы получены мной от Т.А. Мавриной (сестры С.А. Лебедева), Н.С. Лебедевой и Е.С. Осечинской (дочерей С.А. Лебедева), А.А. Дородницына, от бывших учеников Лебедева — В.А. Мельникова, B.C. Бурцева, Г.Г. Рябова, П.П. Головистикова, В.И. Рыжова и от ветеранов вычислительной техники — Б.И. Рамеева, М.К. Сулима, Т.М. Александриди, Н.П. Брусенцова, Ю.В. Рогачева, И.Я. Акушского, от жены В.М. Глушкова — ЕМ. Глушковой и сына М.А. Карцева — В.М. Карцева, за что выражаю всем глубокую благодарность.

Краткая история становления и первоначального развития цифровой электронной вычислительной техники, отраженная в зеркале жизни и творчестве выдающихся ученых — ее создателей, и составила основное содержание книги. Автор не претендует на полноту изложения биографий, на обстоятельную оценку результатов творчества ученых. Возможно, что и толкование некоторых событий достаточно субъективно и отражает точку зрения автора или лиц, сообщивших ему ту или иную информацию. Мысли, мнения, суждения, воспоминания современников событий, краткие характеристики ученых и эволюция разработанных ими ЭВМ — вот основное содержание книги. В этом, по мнению автора, ее главная ценность как для читателя, так и для более полных и объективных исследований историков вычислительной техники.

Материал книги позволяет также понять наиболее очевидные причины потери Советским Союзом высоких позиций в области вычислительной техники, сыгравшие свою отрицательную роль еще до разрушительной «перестройки». Это, во-первых, административно-волевое решение повторить («советизировать») американскую систему машин IBM-360, против чего активно возражали Лебедев, Рамеев, Глушков, Сулим и ряд других ученых. Во-вторых, это ничем не обоснованное, освященное правительством «разрезание» в 70-х годах компьютерной промышленности на три части: микроэлектронные элементы (производитель Министерство электронной промышленности МЭП), универсальные ЭВМ (Министерство радиопромышленности МРП) и управляющие ЭВМ (Министерство приборостроения, автоматики и систем управления ПСА и СУ). В результате каждое из министерств, не придерживаясь достигнутой ранее договоренности, стало разрабатывать полную гамму вычислительных средств, не очень-то стараясь помогать друг-другу. МРП и Министерство ПСАШ СУ, где были сосредоточены лучшие специалисты, лишились, по существу, современной электронной базы, и их разработки заранее оказались обречены на неудачу, а МЭП, в котором кадры разработчиков практически отсутствовали, но имелась мощная промышленная база для выпуска средств микроэлектроники, не желая интегрироваться с другими министерствами, решило повторять американские разработки, пойдя на заведомо многолетнее отставание от мирового уровня. В-третьих, повлияла недооценка роли академической науки и ее отрыв от промышленного производства, из-за чего реализация передовых научных результатов, как правило, осуществлялась с большим трудом и потерей времени.

Книга готовилась частями. Вначале, в связи с 90-летнем со дня рождения С.А. Лебедева была подготовлена и выпущена по заказу АН Украины отдельной книжкой небольшим тиражом, первая глава, содержащая материалы о Лебедеве («История вычислительной техники и лицах. Академик С.Лебедев». — К, 1992). По книге был подготовлен фильм «Академик СЛебедев. Хранить вечно» (авторы сценария БЛ. Малиновский, В.И. Хмельницкий, Киевская студия научно-популярных фильмов, 1992 г.). Книга в продажу не поступила, распространялась лишь в АН Украины и Российской АН. Фильм демонстрировался в обеих академиях, но в прокат не передавался.

Учитывая наступающее 70-летие со дня рождения В.М. Глушкова, автор подготовил книгу «Академик В. Глушков. Страницы жизни и творчества», К, 1993). Она была издана по заказу Института кибернетики им. ИМ. Глушкова АН Украины и также не поступала в продажу. По материалам книги был создан телефильм. «Кибернетик В Глушков. Взгляд из будущего» (авторы сценария Ю.В. Капитонова, Б.Д. Малиновский, В.И. Хмельницкий, Киевская студия «Золотые ворота», 1993 г.). Материалы этих книг легли в основу первых двух глав предлагаемой широкому читателю монографии. Поскольку книга о Е.М. Глушкове включала материалы о его деятельности не только в области вычислительной техники, но и в кибернетике, вторая глава получилась наиболее обширной. Этому способствовало и то, что тяжело заболевший ученый оставил продиктованные дочери (в последние девять дней, когда еще был в сознании), рассказы о своем творческом пути, своеобразную исповедь, которую автор воспроизводит без каких-либо сокращений.

Цифровая электронная вычислительная техника за полвека своего существования ушла далеко вперед и тем не менее она еще не достигла своей зрелости. Возможно, что в XXI веке сегодняшние ЭВМ будут представляться такими же устаревшими, как сейчас первые ЭВМ и сам термин «вычислительная техника» заменится каким-либо другим. (Автору, например, представляется более удачным термин «интеллектроника» — интеллектуальная электроника, учитывающий перспективу развития средств обработки информации).

И все-таки во всемирной истории компьютерной науки и техники наиболее интересными и значимыми останутся страницы, посвященные становлению и первоначальному развитию цифровых электронных вычислительных машин, жизни и творчеству их первосоздателей, в том числе в Советском Союзе. Хотелось бы надеяться, что материалы, собранные в книге, не оставят равнодушным ни читателя, ни будущего исследователя, решившего написать полнокровную историю замечательного детища XX века.


Путь в бессмертие

«Уметь дать направление -

признак гениальности».

Ф. Ницше
Первое знакомство

Сергей Алексеевич Лебедев был первым из плеяды замечательных ученых, с кем свела меня судьба. Еще в работе над дипломным проектом в Ивановском энергетическом институте при расчете устройства управления копировально-фрезерного станка мне пришлось пользоваться научными статьями Лебедева об устойчивости автоматических систем, помещенных в сборнике трудов Института электротехники АН Украины. Они очень помогли. На запрос о возможности поступления в аспирантуру института я, к радости, получил положительный ответ. Так в 1950 г. я оказался в Киеве.

Лебедев был старше меня почти на двадцать лет и уже успел многого достичь. Его научные труды в области управления энергетическими системами получили международную известность. Я же, новоиспеченный аспирант Института электротехники АН Украины, лишь начинал свой путь в науке, совершенно неуверенный в том, что могу сделать что-либо полезное, но одержимый этим желанием и уже «пришедший в себя» после четырех изнурительных лет, проведенных на фронтах Великой Отечественной войны. В тот период Сергей Алексеевич был директором Института электротехники АН Украины, но более половины времени проводил в Москве, где руководил (по совместительству) лабораторией № 1 Института точной механики и вычислительной техники АН СССР (ИТМ и ВТ АН СССР). Возвращаясь в Киев, он быстро решал накопившиеся за время отсутствия вопросы и уезжал в бывшее монастырское местечко Феофанию под Киевом, в свою секретную лабораторию, где заканчивалось создание первенца отечественной цифровой вычислительной техники.

Хотя первая ЭВМ скромно называлась Малой электронной счетной машиной (МЭСМ), она насчитывала 6 тыс. электронных ламп и едва умещалась в левом крыле двухэтажного здания. До войны в этом здании размещался филиал Киевской психиатрической больницы. Гитлеровцы, вступив в Феофанию, расстреляли больных и устроили здесь госпиталь. Во время обстрелов при освобождении Киева здание получило большие повреждения и в таком виде было передано в 1948 г. Институту электротехники АН Украины для размещения лаборатории. Добираться в Феофанию приходилось служебным видавшим виды автобусом по грунтовой дороге, которая весной, и осенью превращалась в скользкую, малопригодную для передвижения полосу препятствий. Зато летом Феофания, окруженная дубовой рощей, становилась поистине райским уголком, где щебетали птицы, бегали зайцы, было множество грибов и ягод.



С.А. Лебедев (50-е гг.)

Впервые я увидел Сергея Алексеевича на одном из заседаний ученого, совета Института осенью 1950 г. В его облике и поведении не было ничего броского, необычного. Невысокий, худощавый. Очки в черной оправе делали лицо более строгим, нежели оно было на самом деле, в чем я смог убедиться позднее. Голос громкий, чуть хрипловатый, но приятный. Вел заседание спокойно и деловито. Внимательно слушал выступающих. Сам, бросая реплики, был краток. Громко и заразительно смеялся, когда кто-либо удачно острил.

«Улыбка необыкновенно красила обычно очень серьезное лицо Сергея Алексеевича, словно открывались ставни и врывался сноп светлых солнечных лучей. И лицо его становилось таким хорошим, добрым, по-детски милым и незащищенным. Кто-то из великих писателей сказал, что в улыбке проявляется душа человека, его подлинная сущность. Сергей Алексеевич редко улыбался, и тот, кто не видел его улыбки, даже не догадывался о том, сколько мягкости, человечности было в нем» (Л.Н. Дашевский, Е.А. Шкабара. Как это начиналось. — М, 1981).

Работая над кандидатской диссертацией, я познакомился с ним ближе. Сергей Алексеевич не был моим руководителем (им был канд. техн. наук А.Н. Милях, руководитель лаборатории автоматики института). Тем не менее окончательным определением темы кандидатской диссертации я обязан С.А. Лебедеву. Это случилось на втором году моей учебы в аспирантуре. В то время МЭСМ уже начала «дышать» — на ней просчитывались первые пробные задачи. В Москве вовсю шел монтаж Большой электронной счетной машины (БЭСМ). Позднее она стала называться Быстродействующей электронной счетной машиной. Сергей Алексеевич не мог не думать о будущем развитии своих детищ — МЭСМ и БЭСМ. Обе машины были выполнены на электронных лампах, часто выходили из строя, имели огромные размеры, потребляли много энергии. Добиться улучшения этих показателей можно было путем замены ламп более надежными элементами с меньшими размерами и потреблением энергии. Придя как-то в нашу лабораторию автоматики, Сергей Алексеевич предложил всем подумать о том, как создать надежный безламповый триггер — один из основных элементов ЭВМ. Из небольшого коллектива лаборатории я оказался самым настойчивым — через полгода мучительных раздумий и экспериментов смог показать Сергею Алексеевичу первый образец триггера на магнитных усилителях, идентичный по функциям электронному. Он внимательно ознакомился с его работой, умело использовав осциллограф, и, одобрив, посетовал на низкое быстродействие нового элемента (25 тыс. переключений в секунду). В последующие месяцы то в Москве, то в Киеве я несколько раз встречался с ним, делился новыми результатами исследований.

Запомнилась простота общения с Сергеем Алексеевичем. Не помню случая, чтобы он высказал недовольство при моем вторжении в его кабинет или при случайной встрече. Поражало и радовало внимание, с которым он выслушивал меня, аспиранта, когда я делился с ним информацией о безламповых элементах, найденной в новых публикациях.

В свой первый приезд в Москву я с разрешения Сергея Алексеевича осмотрел БЭСМ (она была еще засекречена). Огромная машина произвела на меня сильное впечатление. В качестве памяти в то время в ней использовались линии задержки на ртутных трубках (позднее они были заменены потенциалоскопами).

Уже тогда мне удалось познакомиться со многими разработчиками БЭСМ — в то время молодыми специалистами, а позднее маститыми учеными: академиками RA. Мельниковым и В.С Бурцевым, д-рами техн. наук В.В. Бардижем и А.С. Федоровым, канд. техн. наук П.П. Головистиковым и др.

Поинтересоваться же биографией ученого не пришлось — жизнь и работа заставляли смотреть не назад, а вперед. Только теперь мне удалось восполнить этот пробел с помощью Екатерины Сергеевны Осечинской, дочери С.А. Лебедева, и сестры Сергея Алексеевича — Татьяны Алексеевны Мавриной.

Детство

Сергей Алексеевич Лебедев родился 2 ноября 1902 г. в Нижнем Новгороде в семье учителя. Мать Анастасия Петровна (в девичестве Маврина) покинула богатое дворянское имение, чтобы стать преподавателем в учебном заведении для девочек1 из бедных семей. Алексей Иванович Лебедев, отец Сергея, рано оставшись сиротой, жил у тетки в деревне. В девять лет вернулся к овдовевшей матери в Кострому, два года посещал приходскую школу. После этого пять лет работал конторщиком на той же ткацкой фабрике, что и мать, и много читал.



Алексей Иванович Лебедев

Сблизившись со сверстниками, увлекавшимися идеями народничества, твердо решил стать сельским учителем. С пятью рублями, скопленными за долгие месяцы работы, отправился в Ярославскую губернию поступать в школу, открытую Ушинским для детей-сирот. Окончив с отличием ее и учительский институт, стал преподавать в с. Родники (теперь г. Родники Ивановской области). В декабре 1890 г. вместе с другими членами подпольной народовольческой организации был арестован и посажен на два года в тюрьму. После освобождения семья переехала в Нижний Новгород. Один за другим появились четверо детей — Екатерина, Татьяна, Сергеи и Елена.

В период революции 1905 г. А.И. Лебедев стал одним из организаторов Крестьянского союза, губернский комитет которого избрал его председателем. Почти миллионные тиражи имели его брошюры «Что читать крестьянам и рабочим», «Словарь политических терминов» и др. В эти же годы АЛ. Лебедев создал многочисленные труды по педагогике. Четыре издания выдержал его «Букварь», пользовались популярностью «Книга для чтения в сельских школах», «Мир в картинках» и др.

И Алексей Иванович, и Анастасия Петровна неукоснительно следовали принципу: жизнь народного учителя должна служить примером и образцом как для учеников, так и для своих детей. Безукоризненная честность, неприятие какого-либо ябедничества, подобострастия, трудолюбие ставились во главу воспитания. Так воспитывались натуры увлеченные, глубокие и гармоничные.

По воспоминаниям Т.А. Мавриной, Сергей был обычным мальчиком. Любил плавать и легко переплывал Оку. Со страстью играл в лапту, козны, чушки, чижики, городки. Очков тогда не носил… Любил играть в шахматы. Как-то смастерил динамо-машину и лейденскую банку, накапливающую электрический заряд. Протянув провода из столовой в кухню и бабушкину комнату, соорудил электрический звонок.

Все товарищи Сережи увлекались музыкой. Сам он играл на фортепьяно, особенно любил сочинения Бетховена и Грига. Много читал. Книги были в доме везде, шкафов не хватало, соорудили полки даже в холодных сенях. Знал наизусть множество поэм и стихов. Любил Блока, Гумилева, зачитывался романами Дюма.

Как прекрасно выразилась Т.А. Маврина, ниточки из детства тянулись ко всему, чта делали впоследствии Сергей и остальные дети Лебедевых.

Сереже едва исполнилось пятнадцать лет, когда началась революция. Поначалу ее приняли с энтузиазмом. Но чем дальше, тем все мрачнее становилось настроение в семье, и не потому, что пришлось, как и всей стране, голодать, а Наробраз перебрасывал учителя из одного города в другой (Симбирск, Курмыш, Сарапул). Страшнее было то, что людей обрекали на голод духовный, уничтожали культуру и робкие ростки свободы, за которые так страстно боролся Алексей Иванович.

Молодость же брала свое. Вот как описывает это время сестра Лебедева Татьяна Алексеевна, впоследствии известная художница.

«В Курмыше на Суре весной по большой воде мы катались на лодке по вечерам, захватывая и немалый кусок ночи. Всегда оставляли незапертым окно большого дома, чтобы никого не будить, когда вернемся. В старом парке ухал филин. Закат — и светлая ночь уже без звезд. Мы пробирались между кустами, задевая их веслами. А кусты эти были верхушками леса. Мелководная Сура в разлив делала такие же чудеса, как и наши Ока и Волга.



Анастасия Петровна Лебедева

В большой разлив в Нижнем Новгороде, когда еще не был поставлен плашкоутный мост, при переправе через реку йесла цеплялись за телеграфные провода. На Суре плыть по верхушкам леса было неизведанным еще счастьем.

Когда вода спала, мы, получив по командировочному удостоверению ландрин, селедку и черный хлеб — на дорогу, поехали пароходом до Васильуральска и дальше до Нижнего. А осенью, нагрузившись только яблоками (из знакомого сада надавали), поплыли в Сарапул на Каме, куда направил Наркомпрос отца. В пути ели яблоки, спали в пустых каютах.

У Казани пароход стоял долго, можно было посмотреть город, но зыбучие пески нас туда не пустили. Пристань была далеко от города. Зато Кама с нестеровскими берегами и голубой очень сильной водой была обворожительна. Она уже Волги и уже Оки, берега с обеих сторон высокие, лесистые, затем пониже.

Сарапул ближе Уфы. Пристань такая же, как везде. Осень. Еще ярче нестеровские пейзажи — темные елки на желтом фоне леса. Лиственица осенью яркая и густо и мягко золотая, от нее и получается нестеровский пейзаж.

Школа, где нам пришлось жить, была пустая, располагалась за большим пустырем около молодого леса. Мебелью служили парты и нераспакованные ящики с книгами и негативами; на ящики мама ставила самовар, мы с Катей рисовали клеевыми красками зверей из книги Кунерта — школьные пособия. За это нам выдавали паек в виде ржаного зерна, из которого мама варила на примусе кашу. Сергей где-то доучивался. Свободное время мы проводили в городской библиотеке. Там оказались журналы „Мир искусства“, „Аполлон“, которыми начали интересоваться еще в Нижнем.

Зима в Сарапуле очень холодная — до -40 (хорошо, что без ветра) — и ярчайшее голубое небо. Ночью на звезды бы глядеть — да больно холодно. Местные жители, видно, к морозам привычные — базар на площади. Деревенские бабы в тулупах сидели на кадках с „шаньгами“, (местные ватрушки — белый блин, намазанный мятой картошкой). Какие-то „деньги“ были, потому что в памяти остался навсегда вкус этих „шанег“, после ржаной каши — изысканный.



Нижний Новгород, где родился С.А. Лебедев (рисунок Т.А. Мавриной, сестры ученого)

В Сарапуле кроме нестеровских лесов и интересных журналов в библиотеке была еще своя камская „третьяковская галерея“. Мы забирались кое-как по остаткам лестницы на второй этаж брошенного, без окон и дверей, дома на набережной и лазали по. сохранившимся балкам, очарованные чудесами. Надо же такое придумать! Все стены, простенки, проемы окон и дверей и потолок — все было разрисовано картинками (видно, из „Нивы“ брали). Русалки Крамского — во всю стену, „Фрина“ Семирадского, „Три богатыря“ Васнецова — тоже во всю стену — это, видно, зала. Где потеснее — боярышни Маковского, всякие фрагменты на простенках. Всего не упомнишь. Может, хозяин — художник, может, это заказ какого-то одержимого искусством чудака-домовладельца? Спросить не смели. Да так даже интереснее. Кто-то так придумал!

В конце зимы отец с Сергеем уехали в Москву по вызову Луначарского — налаживать диапозитивное дело. Кино тогда еще почти не было, а был в ходу „волшебный фонарь“ с цветными диапозитивами. Увеличенные фонарем на белом экране (простыне), они давали представление о чем-нибудь полезном „для школы и дома“.

Мама заболела тифом. В бреду все напоминала нам — не упустите самовар… Мы научились с ним управляться и ждали вестей из Москвы. Приехал за нами героический Сергей. Гимназическая шинель внакидку (вырос уже из нее!). На ноги мы приспособили ему „валенки“ из рукавов ватного пальто. Выменяли за самовар мешок сухарей у сапожника. Сергей получил какие-то „командировочные“ харчи. Где-то и как-то добыл теплушку (по мандату из Москвы) и возчика, чтобы отвезти на железную дорогу вещи, нас с Катей и маму, остриженную после тифа наголо, закутанную в меховую ротонду.

В теплушке посредине лежал железный лист, на котором можно было разводить костерок для обогрева и варки похлебки из сухарей. На остановках Сергей с чайником бегал за водой. Мы запирали дверь на засов, чтобы никто к нам не залез. И так за какие-то длинные дни доехали до Москвы-Сортировочной, где поставили наш вагон. Теплушку заперли или запечатали, не помню, а мы пошли пешком по мокрому московскому снегу, по воде дошли до Сухаревской площади (Колхозная потом). Диву дались — зимой вода! Одиноко стоит Сухарева башня, и пусто кругом. Потом на площади торг. Знаменитая „Сухаревка“. Я много рисовала из окна. На какие деньги шел торг? Не знаю. Трамвай был бесплатным, хлеб тоже…

От Виндавского вокзала (Рижского) шел трамвай до Новодевичьего монастыря через всю Москву. У Сухаревки остановка. Можно было прицепиться к вагону и ехать до Ленинской библиотеки, пока стояли холода (там тепло и вода), до Новодевичьего монастыря, что на Москва-реке, — когда пришли весна и лето. Можно было погулять и покупаться. Вода к себе тянет. Потом лето стали проводить на даче, снимали избу в Манилове, что поближе к Кунцеву, на Москва-реке. Тут, под кустом у реки, где мы купались чуть-ли не весь день, Сергей готовился к поступлению в Высшее техническое училище им. Баумана. Покупается — поучится. И так все лето. Подготовился и был принят.

Младшая сестра поступила в Институт востоковедения, а я во Вхутемас. На этом закончу».

На пути к созданию ЭВМ

В институте С.А. Лебедев сразу приобщился к научному творчеству. Специализировался в области техники высоких напряжений. Лекции читали такие выдающиеся ученые, как создатель Всесоюзного электротехнического института им. Ленина (ВЭИ) К.А. Круг, Л.И. Сиротинский и А.А. Глазунов. В дипломном проекте, выполненном под руководством Круга, Лебедев разрабатывал новую в то время проблему — устойчивость параллельной работы электростанций. Содержание проекта вышло далеко за рамки студенческой работы. Это был серьезный труд, имевший большое научное и практическое значение.

Получив в апреле 1928 г. диплом инженера-электрика, С.А. Лебедев стал преподавателем МВТУ им. Баумана и одновременно младшим научным сотрудником ВЭИ. Вскоре он возглавил группу, а затем и лабораторию электрических сетей.

В 1933 г. совместно с А.С. Ждановым опубликовал монографию «Устойчивость параллельной работы электрических систем», дополненную и переизданную в 1934 г. Еще через год ВАК присвоил молодому ученому звание профессора. В 1939 г. С.А. Лебедев защитил докторскую диссертацию, не будучи кандидатом наук. В ее основу была положена разработанная им теория искусственной устойчивости энергосистем.

Почти двадцать лет проработал Сергей Алексеевич в Москве. Последние десять лет он руководил отделом автоматики. До войны ВЭИ являлся одним из самых известных научно-исследовательских институтов, где работал ряд ученых с мировым именем. Отдел автоматики нанимался проблемой управления энергетическими системами (С.А. Лебедев, П.С. Жданов, А.А. Гродский), теорией автоматического регулирования (Л.С. Гольдфарб, Д.И. Марьяновский, В.В. Солодовников), новыми средствами автоматики (Д.В. Свечарник), телемеханикой (А.В. Михайлов) и представлял собой настоящее созвездие молодых талантов. Некоторые сотрудники впоследствии стали крупными учеными, а их научные груды получили мировое признание. Замечательной особенностью института было наличие в нем достаточно мощной производственной базы, благодаря чему результаты исследований внедрялись в практику.


Удалось разыскать одного из ветеранов ВЭИ — профессора д-ра техн. наук Д.В. Свечарника, поделившегося воспоминаниями о Сергее Алексеевиче.

«В 1935 г. к моему рабочему столу в ВЭИ подсел новый руководитель нашего отдела автоматики молодой профессор Сергей Алексеевич Лебедев. Поинтересовался: что я за год с лишним после окончания института успел сделать? Разговор пошел совсем неформальный, — Сергей Алексеевич сумел быстро схватить суть проблемы, похвалил спроектированную мной и Марьяновским систему автоматизации прокатных станов — в ней использовался запатентованный нами принцип введения гибких нелинейных обратных связей (в отечественной литературе уже не раз указывалось, что этот принцип в США был предложен на 11 лет позже…), — предсказал ему широкое применение. Но Сергей Алексеевич умел не только одобрять то, что ему нравилось. Когда мы на опытном заводе ВЭИ отлаживали образец этой системы и она, конечно, с ходу „не пошла“, он нашел в чертежах соединение, могущее вызвать неприятности, молча показал на него и так посмотрел, что я готов был сквозь землю провалиться… Когда через год мы успешно испытали эту аппаратуру на стане-500 в Днепродзержинске, он не только сам приехал наблюдать за автоматической работой стана, но и привез с собой директора ВЭИ. За это изобретение Центральный совет изобретателей присвоил в 1936 г. мне и Д.И. Марьяновскому почетное звание „Лучший изобретатель СССР“. Сергей Алексеевич ничего не получил — да он никогда и не добивался наград.

Совместная работа вскоре переросла в дружбу. Летом мы с ним уезжали в дальние путешествия — преимущественно в горы. Пошли как-то на Эльбрус. Последние 50 метров на подходе к седловине я буквально прополз. Сергей Алексеевич довольно бодро шагал… Рискованно прыгал с камня на камень, и проводник, глядя на него, цокал языком и приговаривал: „Ай, ай, такой старый и такой смелый!“ („старому“ тогда было лет 35).

Но смелым он действительно был — и не только в горах. В зловещем 1937 году боязливый руководитель отдела электрических машин ВЭИ уволил А.Г. Иосифьяна, уже тогда проявившего себя талантливым исследователем. Разработанный им в 1935–1936 гг. первый в стране линейный электродвигатель экспонировался на Всемирной выставке в Нью-Йорке. Отец ученого был армянским священником и дашнаком, что и испугало его начальника. Сергей Алексеевич не колеблясь пригласил его в свой отдел. В те страшные 30-е годы, когда подсиживание и доносительство были обычным явлением, в отделе ВЭИ, которым заведовал Сергей Алексеевич, сотрудники чувствовали себя уверенно и спокойно. И я, и А.Г. Иосифьян, и такие известные ученые как А.В. Михайлов, А.А. Фельдбаум, Н.Н. Шереметьевский и многие другие, — все мы „птенцы гнезда“ Сергея Алексеевича, бывшие сотрудники его отдела в ВЭИ.

Надвигалась война. Отдел переключился на оборонную тематику. Мы с Сергеем Алексеевичем начали работу — впервые непосредственно совместную — над созданием боевых средств, самонаводящихся на излучающую или отражающую излучение цель. В сентябре 1941 г. Сергей Алексеевич эвакуировался с ВЭИ в Свердловск. Корпуса ВЭИ были заминированы. Меня включили в состав команды подрывников, которая должна была взорвать ВЭИ, если немцы „подойдут к воротам Москвы“. Прошли надлежащий инструктаж, но, к счастью, этого не понадобилось. В декабре я уже „воссоединился“ с Сергеем Алексеевичем в Свердловске. Мне пришлось больше заниматься созданием головки самонаведения (тогда и были впервые разработаны и потом запатентованы так называемые экстрафокальные головки), Сергею Алексеевичу — аэродинамикой и динамикой летательного аппарата (им была разработана четырехкрылая система с автономным управлением по независимым координатам). Но приходилось отвлекаться на более земные работы — ездили мы с Сергеем Алексеевичем и на лесозаготовки. Скудно питаясь брюквой и хлебом, валили за 11-часовой рабочий день 100–110 могучих деревьев с помощью двуручной пилы… В 1944 г. ВЭИ вернулся в Москву, и начались продувки моделей нашего летательного аппарата в Жуковском, под Москвой. Результаты обсуждали с академиком Христиановичем, Дородницыным. Вместе — уже в 1945–1946 гг. — проводили натурные испытания на Черном море. И хотя мы оба в равной степени числились главными конструкторами „управляемого оружия“, доклад на комиссии Совета Министров СССР Сергей Алексеевич поручил мне. Сам он только отвечал на вопросы „по своей части“. Кто-то из членов комиссии прикрепил к своей груди „замарбличенную“, внешне совершенно темную лампочку, и, как бы он ни приседал, отпрыгивал в сторону, тупорылая акула со взаимно перпендикулярными плавниками все время самонаводилась на его грудь — это впечатляло… Маршал авиации Жаворонков дал высокую оценку нашей работе и рассказал, чего стоит авиации обычными бомбами поразить не только боевой огрызающийся корабль, но даже скромную баржу. И когда в октябре 1946 г. на натурных испытаниях в Евпатории, где я был вместе с Сергеем Алексеевичем, было получено прямое попадание в баржу, мы молча обнялись… Это был один из первых шагов по созданию сверхточного оружия, только недавно разработаного в Америке.

Дружба наша продолжалась и после завершения совместных работ. Я чувствовал себя родным в его семье. Сергей Алексеевич никогда не скрывал своих симпатий и антипатий. Помню, когда уже наметился переезд в Киев, я стал подшучивать, что ему придется стать „Лебеденке“, а он со всей серьезностью отвечал: „Да буду ли Лебедевым, Лебеденко или Лейбедевым — я останусь таким же. Разве дело в этом?“.

Таким он был — талантливым ученым и скромным человеком, терпеливым воспитателем и строгим руководителем, рассудительным и смелым в действиях, терпимым к ошибкам, но ненавидящим подлость и измену».

Д.В. Свечарник отметил лишь часть работ, выполненных Сергеем Алексеевичем в ВЭИ. Однако, находясь в Свердловске, он в удивительно короткие сроки разработал быстро принятую на вооружение систему стабилизации танкового орудия при прицеливании. Никто не знает, скольким танкистам в годы войны она спасла жизнь, позволяя наводить и стрелять из орудия без остановки машины, что делало танк менее уязвимым. За эту работу С.А. Лебедев был награжден орденом Трудового Красного Знамени и медалью «За доблестный труд в Великой Отечественной войне 1941–1945 гг.».

Почти каждая работа ученого в области энергетики требовала создания вычислительных средств для выполнения расчетов в процессе ее проведения либо для включения их в состав разрабатываемых устройств. Так, для расчета тысячекилометровой сверхмощной (9600 МВт) линии электропередачи Куйбышевский гидроузел — Москва пришлось создать высокоавтоматизированную установку из мощных индуктивностей и емкостей, реализующую математическую модель линии. Это грандиозное сооружение было установлено в одном из зданий на площади Ногина в Москве. Второй экземпляр модели был собран в Свердловске. Использование модели, а по существу — специализированного вычислительного устройства, позволило быстро и качественно провести необходимые расчеты и составить проектное: шдание на уникальную линию электропередачи.

Для системы стабилизации танковой пушки и автоматического устройства самонаведения на цель авиационной торпеды потребовалось разработать аналоговые вычислительные элементы, выполняющие основные арифметические операции, а также действия дифференцирования и интегрирования. Развивая это направление, в 1945 г. Лебедев создал первую в стране электронную аналоговую вычислительную машину для решения систем обыкновенных дифференциальных уравнений, которые часто встречаются в задачах, связанных с энергетикой.



А.Г. Лебедева

Двоичная система также не осталась вне поля зрения ученого. Его жена, Алиса Григорьевна, вспоминает, как в первые месяцы войны по вечерам, когда Москва погружалась в темноту, муж уходил в ванную комнату и там при свете газовой горелки писал непонятные ей единицы и нолики…

В.В. Бардиж, заместитель Лебедева по лаборатории, в которой создавалась БЭСМ, утверждает, что если бы не война, то работу над созданием вычислительной машины с использованием двоичной системы счисления ученый начал бы раньше (об этом говорил сам Сергей Алексеевич).

То, что интерес к цифровым средствам вычислений проявился у ученого до войны, подтверждает и профессор А.В. Нетушил. После окончания четвертого курса Московского энергетического института производственную практику он провел в ВЭИ — в отделе Сергея Алексеевича.

«За месяц производственной практики, — вспоминает он, — я познакомился с работами отдела и удивительно четкой системой руководства Лебедевым большой группой талантливых молодых ученых, каждый из которых имел свои научные интересы, но все вместе искали свое место в большой науке. По определенному графику Лебедев очень организованно и четко, по крайней мере раз в месяц, проводил один день в каждой группе, подробно знакомился с состоянием работ, вникая при этом во все детали.

Центром научной мысли была библиотека, в кулуарах которой часто можно было слушать жаркие научные споры. Сергея Алексеевича не было слышно, но его замечания были очень весомы, сдержанны, лаконичны. Он пользовался очень большим уважением и любовью. Мои первые впечатления были о нем как о недосягаемом авторитете, в точности и строгости суждений которого никогда не было сомнений. Я не мог даже думать, что с этим маленьким молчаливым человеком с пристальным взглядом через очки у меня когда-нибудь установятся простые дружеские отношения и глубокая симпатия, по-видимому, взаимная.

Следующая моя производственная практика была уже преддипломной и также проходила в ВЭИ в отделе С.А. Лебедева в 1936 г. Мне была предложена тема по аналоговым элементам автоматики и измерительной техники с разработкой фотоэлектронного компенсатора.



А.В. Нетушил (30-е гг.)

Лебедев интересовался моей работой, иногда беседовал со мной. Однажды спросил, отдаю ли я себе отчет в том, что значит посвятить себя научной работе, и предупредил, что рассчитывать на особое благополучие не приходится и надо быть готовым к нужде. Я принял это как должное.

Весной 1937 г. состоялась защита наших дипломных проектов. Направление на работу по окончании института я получил в ВЭИ, но когда подал свои документы с автобиографией, в которой было написано, что поддерживаю связь с репрессированным отцом, то в руководстве института возникло замешательство и, несмотря на все старания С.А. Лебедева, меня на работу как сына „врага народа“ не приняли. Работавший в Секции электросвязи Академии наук СССР К.М. Поливанов, лекции которого я прилежно посещал, в 1939 г. пригласил меня в лабораторию магнитной дефектоскопии, где я впервые приобщился к дискретной вычислительной технике.

Перед группой Поливанова была поставлена задача: по магнитному полю, создаваемому в железнодорожном рельсе, автоматически обнаружить дефекты в сварных швах. Исследование магнитных полей при различных намагничиваниях участка рельса привело к выводу о возможности диагностирования повреждений по количеству импульсов, наводимых в индикаторе. Возникла задача построения различных электронных быстродействующих счетчиков импульсов.

Результатом моих исследований явилась кандидатская диссертация на тему „Анализ триггерных элементов быстродействующих счетчиков импульсов“. Как известно, электронные триггеры стали позднее основными элементами цифровой вычислительной техники. С самого начала этой работы в 1939 г. и до ее защиты С.А. Лебедев с вниманием и одобрением относился к моим исследованиям. Он согласился быть оппонентом по диссертации, защита которой состоялась в конце 1945 г. В то время еще никто не подозревал, что Лебедев начинает вынашивать идеи создания цифровых электронных вычислительных машин, сделавших его имя бессмертным».

Говорят архивы

В Киеве, в Национальной академии наук Украины, где создавалась МЭСМ, сохранена конструкторская документация и папки с материалами о первой отечественной ЭВМ, многие из которых составлены С.А. Лебедевым. Чья-то заботливая рука сорок лет назад написала на них: «Хранить вечно».

Перелистаем некоторые. В короткой записке, направленной в Совет по координации Академии наук СССР в начале 1957 г., Лебедев пишет «Иыстродействующими электронными счетными машинами я начал мпиматься в конце 1948 г. В 1948–1949 гг. мной были разработаны основные принципы построения подобных машин. Учитывая их исключительное значение для нашего народного хозяйства, а также отсутствие в Союзе какого-либо опыта их постройки и эксплуатации, я принял решение как можно быстрее создать малую электронную счетную машину, на которой можно было бы исследовать основные принципы построения, проверить методику решения отдельных задач и накопить эксплуатационный опыт. В связи с этим было намечено первоначально создать действующий макет машины с последующим его переводом в малую электронную счетную машину. Чтобы не задерживать разработку, запоминающее устройство пришлось выполнить на триггерных ячейках, что ограничило его емкость. Разработка основных элементов была проведена в 1948 г… К концу 1949 г. были разработаны общая компоновка машины и принципиальные схемы ее блоков. В первой половине 1950 г. изготовлены отдельные блоки и приступили к их отладке во взаимосвязи; к концу 1950 г. отладка созданного макета была закончена. Действующий макет успешно демонстрировался комиссии».

Через два месяца после демонстрации макета С.А. Лебедев выступил на закрытом ученом совете Института электротехники и теплоэнергетики АН Украины. Сохранился протокол ученого совета, который впервые был опубликован в журнале «Управляющие системы и машины» (1992, № 1/2). Учитывая значение этого документа для истории вычислительной техники, приведем его полностью.


Секретно Экз.

Протокол № 1 заседания закрытого ученого совета

института электротехники и теплоэнергетики АН УССР

от 8 января 1951 г.

Присутствовали:

члены ученого совета: действ, чл. АН УССР И.Т. Швец, чл. АН УССР С.А. Лебедев, чл. — кор. АН УССР С.И. Тетельбаум, д-ра техн. наук А.Д. Нестеренко, В.И. Толубинский, канд. техн. наук Л.В. Цукерник, Е.В. Хрущева, А.Н. Милях, А.И. Петров.

Приглашенные:

председатель Бюро ОТН, действ, чл. АН УССР Н.Н. Доброхотов.

Институт математики: директор ин-та, действ, чл. АН УССР А.Ю. Ишлин-ский, зав. отделом И.Б. Погребыский, д-р техн. наук С.Г. Крейн.

Институт электротехники: сотрудники лаборатории моделирования и регулирования (зав. лаб. С.А. Лебедев), канд. техн. наук Л.Н. Дашевский, канд. техн. наук Е.А. Шкабара, мл. науч. сотр. З.Л. Рабинович, инженер С.Б. Погребин-ский, сотрудник лаборатории автоматики, канд. техн. наук Г.К. Нечаев.

Повестка дня:

1. Счетно-решающая электронная машина (доклад директора Института электротехники АН УССР, действ, чл. АН УССР С.А. Лебедева).

Слушали: Доклад действ, чл. АН УССР С.А. Лебедева «Счетно-решающая электронная машина».

Принцип работы быстродействующей машины — принцип арифмометра. Основные требования к такой машине — ускорение и автоматизация счета. Перед лабораторией была поставлена задача создать работающий макет электронной быстродействующей счетной машины. При разработке макета нами был принят ряд ограничений. Скорость операций принята равной 100 операциям в секунду. Количество знаков ограничено пятью в десятичной системе (16 знаков двоичной системы).

Машина может производить сложение, вычитание, умножение, деление и ряд таких действий, как сравнение, сдвиг, останов, предусмотрена возможность добавления операций.

Основным элементом электронной счетной машины является элемент, позволяющий производить суммирование. Применены электронные реле (тригтерные ячейки), в которых осуществляется перебрасывание тока > из одной лампы в другую путем подачи импульсов на сетку. Это дает возможность производить действие сложения, из которого образуются и все остальные действия. Вместо десятичной системы применяется двоичная, что определяется свойствами триггерных ячеек (С.А. Лебедев поясняет работу машины по схеме). Кроме элементов для счета, машина должна иметь элементы, которые управляют процессом вычислений. Такими элементами являются разрешающие устройства и элементы запоминания.

В 1951 году перед лабораторией поставлена задача — перевести макет в работающую машину. Препятствием для этого пока является отсутствие автоматического ввода исходных данных и автоматического вывода полученных результатов. Автоматизация этих операций будет осуществлена с помощью магнитной записи, которая разрабатывается Институтом физики (в лаборатории чл. — кор. АН УССР А.А. Харкевича).

Вопросы задавали:

Н.Н. Доброхотов. Какие еще счетные машины разрабатываются в Советском Союзе и если разрабатываются, то на каком принципе?

А.И. Петров. Какова область применения машины?

А.Ю. Ишлинский. 1) Какова продолжительность жизни элементов машины? 2) Какова надежность работы машины в связи с выходом из строя какого-либо элемента? 3) Как удалось использовать заграничные технические материалы? 4) Какова должна быть квалификация операторов?

Г.К. Нечаев. Каково соотношение по времени счета и вывода (ввода) задания при автоматической работе машины?

И.Т. Швец. 1) Состояние разработки электронно-счетных машин в других учреждениях? 2) Каково положение с разработкой счетных машин за границей и каковы их параметры в сравнении с нашей? 3) Кто разработал триггерные ячейки, с каких пор они известны и где еще применяются? 4) Каково участие в этой комплексной работе Института математики АН УССР, Института физики АН УССР и Института точной механики и вычислительной техники АН СССР?

Л.И. Цукерник. Каковы оригинальные решения, примененные в разработанной Институтом электротехники АН УССР машине?

С.Г. Крейн. Какие задания будет выполнять разработанная машина, когда она будет автоматизирована?

С.А. Лебедев. Отвечаю, группируя однородные вопросы. Я имею данные по 18 машинам, разработанным американцами, эти данные носят характер рекламы, без каких-либо сведений о том, как машины устроены (см. Приложение 1. — Прим. авт.). В вопросе постройки счетных машин мы должны догонять заграницу и должны это сделать быстро.

По данным заграничной литературы, проектирование и постройка машины ведется 5-10 лет, мы хотим осуществить постройку машины за 2 года. 11оказатели американских машин следующие: время умножения на ЭНИАК 5,5 мс, на ЭДВАК 4 мс, на нашей машине 8–9 мс.

Кроме Института электротехники АН УССР, разработкой машины занимаются: а) СКБ-245 Министерства машиностроения и приборостроения; вначале они разрабатывали машину с применением реле, но теперь они перешли на использование электроники; б) Энергетический институт АН СССР; он использует тригтерные ячейки; в) Институт точной механики и вычислительной к-хники АН СССР, комплексно с которым проводится наша работа. Эта машина такая же, как МЭСМ, но она рассчитана на быстродействие большее, чем для существующих американских машин. Время операции в этой машине будет равно 0,2 мс (речь идет о БЭСМ. — Прим. автора).

Принципиально новым в нашей машине является суммирующий элемент, а также решение вопросов осуществления взаимосвязи отдельных элементов машины. Основным принципом при создании, машины было использование лишь проверенных, известных элементов, в том числе триггерных схем.

Область применения машины весьма широкая. На ней могут быть в принципе решены все задачи, которые могут быть сведены к численному решению. С помощью машины может производиться решение дифференциальных уравнений, составление всевозможных таблиц. Преимущественное применение этих машин — проведение однотипных расчетов с различными исходными данными (подсчет траекторий управляемых снарядов). Появление электронных счетных машин дает возможность применять новые математические методы для решения задач статистической физики.

Использовать заграничный опыт трудно, так как опубликованные сведения весьма скупы.

Работающие на машине должны быть трех типов: математики (составление программ); операторы (нахождение повреждений в машине); совмещающие обе указанные специальности.

Для существующей машины время ввода данных и вывода результатов равно времени проведения операции.

Участие Института математики АН УССР выражается в совместной разработке вопросов программирования. Участие Института физики АН УССР выражается в разработке магнитной записи.

Повышение надежности машины мы осуществляем предварительной тренировкой ламп. Выход из строя каких-то элементов машины может быть легко обнаружен.

Выступили:

А.Ю. Ишлинский. Создание макета является одним из крупных достижений Отделения технических наук и С.А. Лебедева. О значении машины дискутировать нечего. Наличие электронной машины снимает многие трудности и позволит не применять тех сложных методов вычислений, которые в настоящее время применяются. Ясно, что такие машины найдут очень широкое применение как в оборонной промышленности, так и в науке.

Разработка такой машины является большим достижением в науке. В дальнейшем не следует машину загружать однотипными вычислениями прикладного характера, а нужно с ее помощью вести научные исследования.

Н.Н. Доброхотов. Важность проводимых по счетной машине работ совершенно очевидна. Задача АН УССР — разработать лучшую в сравнении с заграницей машину. Чтобы машина была сконструирована лучше, необходимо организовать обмен мнениями, необходимо организовать дискуссии по принципиальным вопросам разработки машин. Необходимо обсудить работу в масштабе Союза ССР.

С.И. Тетельбаум. Надо значительно расширить штаты и материальную базу для ускорения проведения этих важных работ.

С.Г. Крейн. Применение электронной машины даст возможность применять ряд новых методов в технике. В связи с этим необходимо максимальное развитие проводимых по машине работ.

И.Т. Швец. Чувство удовлетворения и гордости за нашу Академию наук вызвал доклад С.А. Лебедева, заслушенный сейчас. Работа по электронным счетным машинам относится к числу важнейших работ Академии наук УССР. Необходимо максимально способствовать развитию этих работ и ускорить отработку машины. К числу недочетов необходимо отнести следующее: 1) С.А. Лебедев не борется за приоритет Академии наук УССР по этой работе; 2) комплексирование работы проводится недостаточное, надо проводить работу в более тесной связи с Институтами математики АН УССР и физики АН УССР; 3) не следует использовать в применении к машине термин «логические операции», машина не может производить логических операций; лучше заменить этот термин другим. Я считаю, что размах работы, конечно, надо увеличить, но нельзя сказать, что эта работа — самая главная в Академии наук УССР; надо также помнить, что ассигнования Академии наук в 1951 г. уменьшаются. Необходимо детально продумать, о чем следует просить Президиум АН УССР для скорейшего проведения работы.

С.А. Лебедев. Я должен подчеркнуть, что значение работы по счетно-решающим машинам очень велико. В качестве примера можно привести следующее. Единственным эффективным способом борьбы с дальними ракетами является посылка встречной ракеты. Для этого нужно определить возможную точку встречи. Применение счетно-решающей машины позволит быстро провести необходимые подсчеты траекторий полета ракет, что обеспечит точное попадание. В отношении созыва совещания по счетно-решающим машинам могу сообщить, что по заданию правительства эскизный проект машины будет закончен в I квартале 1951 г. Этот эскизный проект будет передан на рассмотрение экспертам, где он будет весьма тщательно рассмотрен. Согласен, что надо в большей степени привлечь Институты математики и физики АН УССР. Связь с Институтом точной механики и вычислительной техники АН СССР имеется не только по линии финансирования (хотя это важно, так как дало возможность быстро создать макет машины), но и по научной линии. В отношении использования машины для расчетов трудно будет отказывать нуждающимся в расчетах, так как вопросы счетной техники стоят в настоящее время весьма остро.

Постановили:

1. Отметить, что работы, проведенные в Институте электротехники АН УССР под руководством действ, чл. АН УССР С.А. Лебедева по разработке электронной счетно-решающей машины, являются весьма актуальными и имеют большое научное и практическое значение, связанное с оборонными нуждами СССР и задачами научно-исследовательских работ в различных областях науки и техники.

2. Рекомендовать директору Института электротехники АН УССР, действ, чл. АН УССР С.А. Лебедеву войти в Президиум АН УССР с ходатайством об осуществлении мероприятий, направленных на дальнейшее развертывание работ по созданию советской электронной счетно-решающей машины, с тем, чтобы значительно ускорить темпы работ, расширить экспериментальную базу в Феофании, подготовить требующиеся кадры, обеспечить необходимое участие в этой работе других институтов АН УССР.

3. Отмечая комплексный характер работы, проводимой Институтом электротехники АН УССР совместно с Институтом точной механики и вычислительной техники АН СССР, с Институтами математики и физики АН УССР, считать целесообразным разработать мероприятия для наиболее эффективного проведения совместных исследовательских и конструкторских работ на основе комплексного участия в них научных учреждений АН СССР, АН УССР, а также Министерства приборостроения и машиностроения СССР.

Председатель ученого совета действ, чл. АН УССР И.Т. Швец,

Ученый секретарь Е.В. Хрущова.


Существует еще один важный документ, позволяющий с точностью до месяца представить этапы разработки первой отечественной ЭВМ — МЭСМ (публикуется впервые).


Секретно Экз.

Этапы разработки первой электронной (малой) счетной машины


1. Октябрь-декабрь 1948 г.

Разработка общих принципов построения электронных счетных машин.

2. Январь-март 1949 г.

Даны общие направления для разработки отдельных элементов. Семинары по счетным машинам с участием представителей Институтов математики и физики АН УССР.

3. Март-апрель 1949 г.

Разработка триггеров на лампах 6Н9М и 6Н15. Разработка разрешающих устройств на тех же лампах. Разработка генераторов импульсов. Разработка счетчиков на лампах 6Н15.

4. Май-июнь 1949 г.

Разработка арифметического устройства на лампах 6Н15 (1-й вариант). Переезд в новое помещение и оборудование лаборатории.

5. Июль-сентябрь 1949 г.

Разработка арифметического устройства на лампах 6Н9 (2-й вариант). Разработка статистических элементов запоминания. Разработка электронных коммутаторов.

6. Октябрь-декабрь 1949 г.

Создание принципиальной блок-схемы макета машины. Разработка общей компоновки машины. Конструирование и изготовление каркаса машины.

7. Январь-март 1950 г.

Разработка и изготовление отдельных блоков и их отладка. Разработка и изготовление пульта управления машиной. Разработка ТУ на магнитное запоминание.

8. Апрель-июль 1950 г.

Установка блоков на каркасе и монтаж межблочных соединений. Монтаж связей между каркасом и пультом. Отладка на каркасе блоков и групп блоков во взаимодействии. Работы по магнитному запоминанию в Институте физики АН УССР. Образование в Киеве группы Института точной механики и вычислительной техники АН СССР.

9. Август-ноябрь 1950 г.

Отладка управления машиной от пульта. Первый пробный пуск макета машины (6.11.1950 г.).

10. Ноябрь-декабрь 1950 г.

Увеличение количества блоков запоминания для расширения емкости запоминающего устройства. Отработка операций сложения и вычитания. Отработка операций умножения и сравнения.

11. Январь-февраль 1951 г.

Демонстрация (4 января 1951 г.) действующего макета приемной комиссии. Составление акта окончания работ по макету. Во время демонстрации на макете решались задачи по вычислению суммы нечетного ряда факториала числа, возведение в степень. Начата переделка макета в электронную (малую) машину.

12. Март-май 1951 г

Разработка систем постоянных чисел и команд. Введение фотографической записи результата. Разработка системы управления магнитным запоминанием. Введение в эксплуатацию постоянных чисел и команд. Демонстрация работы машины Правительственной комиссии и Комиссии экспертов.

13. Июнь-август 1951 г

Приспособление сортировки с перфокартами для ввода исходных данных в машину. Введение новых блоков для осуществления операций сложения команд, ввода подпрограмм, связи с магнитной записью кодов. Монтаж и отладка управления системой магнитного запоминания. Выход правительственного постановления (№ 2759–1321 от I.\ll.5l г.), обязывающего ввести в эксплуатацию Электронную (малую) машину в IV квартале 1951 г.

14. Август-ноябрь 1951 г

Отработка деления и остальных операций. Переделка блоков запоминания с целью увеличения надежности. Окончание переделки макета в малую машину и опробование ее в целом перед пуском.

15. Декабрь 1951 г

Пуск Электронной (малой) машины в эксплуатацию (25.XII.51 г.). Решение на машине реальных задач: вычисление функций распределения вероятностей



Подсчитано 585 значений р с точностью до единицы 5-го знака, для чего произведено около 250 тыс. операций. Подсчеты произведены за 2,5 ч. На основании вычислений составлены таблицы, предназначенные для определения однородности артиллерийских орудий с точки зрения одинакового технического рассеивания. Эти же таблицы применяются для установки режима работы станков автоматов по качеству продукции.

16. Январь 1952 г

Доклад действ, чл. АН УССР С.А. Лебедева (4 января 1952 г.) на Президиуме АН СССР с принятием постановления о пуске в эксплуатацию Электронной (малой) счетной машины. Доклад действ, чл. АН УССР С.А. Лебедева (11 января 1952 г.) на Президиуме АН УССР о пуске в эксплуатацию Электронной (малой) счетной машины.

12 января 1952 г. Выполнение заказов по расчетам на Электронной счетной машине. Вычисление функций



Подсчитано 2100 значений к, что потребовало выполнения свыше миллиона операций.

25 января 1952 г. Вычисление функций x=tg(x/h) Подсчитано 850 значений х, для чего произведено около миллиона операций.

17. Февраль-май 1952 г.

Расчет значений интеграла типа Френеля



Наладка и ввод в эксплуатацию системы магнитного запоминания. Выполнение расчетов по устойчивости систем сверхмощных электропередач Куйбышев-Москва.

18. Июнь-сентябрь 1952 г.

Увеличение числа разрядов машины с 16-ти до 20-ти для повышения точности расчетов до шестого десятичного знака.

19. Октябрь-ноябрь 1952 г

Выполнение по заданию Главволгосеть-электростроя расчетов процессов втягивания в синхронизм мощных синхронных генераторов по параметрам Куйбышевской ГЭС.

Аналогичные расчеты запрограммированы по заданию Укрводохлопка, проектирующего крупные насосные станции для великих строек коммунизма.

Главный конструктор электронной счетной машины, действ, чл. АН УССР С.А. Лебедев.

Киев — родина МЭСМ

МЭСМ была задумана С.А. Лебедевым как модель Большой электронной счетной машины (БЭСМ). Вначале она так и называлась — Модель электронной счетной машины. В процессе ее создания стала очевидной целесообразность превращения ее в малую ЭВМ. Для этого были добавлены устройства ввода и вывода информации, память на магнитном барабане, увеличена разрядность. И слово «модель» было заменено словом «малая».

Каким образом Киев, Академия наук Украины оказались местом, где была создана первая ЭВМ?

В автобиографии, хранящейся в личном деле Сергея Алексеевича, есть ответ на этот вопрос. Он звучит очень буднично: был приглашен в Академию наук Украины на должность директора Института энергетики. Однако в жизни все было сложнее. Многое определял «господин случай». И не приехал бы Сергей Алексеевич в Киев, если бы… Их много, этих «если бы». Небезынтересно пройтись по их цепочке, тем более что она уходит в… XIX в. и касается человека, сыгравшего огромную роль в жизни С.А. Лебедева.

…В 80-х годах прошлого века одна русская семья, возвращаясь из Парижа в Россию, взяла с собой двухлетнего мальчика-сироту. В Казани, где поселилась семья, его воспитывала немка. Мальчик, нареченный Алексеем Лаврентьевым, оказался на редкость здоровым и умным. Окончив гимназию и Казанский университет, стал профессором математики и химии этого же университета. В 1900 г. в семье профессора родился сын Михаил — будущий академик Михаил Алексеевич Лаврентьев. Уезжая в длительную заграничную командировку в Геттингенский университет, отец взял десятилетнего сына с собой. Вернулись накануне Первой мировой войны. Михаил настолько забыл русский язык, что не смог сдать экзамены в гимназию и поступил в Казанское коммерческое училище. Зато позднее с блеском окончил Казанский и Московский университеты, стал доктором физико-математических наук. Года за три до войны судьба свела его с президентом Академии наук Украины — академиком А.А. Богомольцем, с которым оказались в одном вагоне. Молодой ученый с огромной жизненной энергией очень понравился президенту. Тут же, в поезде, он пригласил его на работу в академию. В 1939 г. Лаврентьев стал директором Института математики и был избран в академики АН Украины.

Когда сотрудники Академии наук Украины реэвакуировались из Уфы в Киев, им пришлось задержаться в Москве в связи с болезнью Богомольца. Он находился в одном из подмосковных санаториев. Замещал президента М.А. Лаврентьев, он-то и рассказал о Лебедеве Богомольцу, представив его как яркую личность, специалиста в области энергетики, электротехники и электроники. Президент заинтересовался и выразил желание познакомиться. И был не разочарован.

В 1945 г., когда Академия наук Украины получила возможность пригласить на 15 вакантных мест в члены академии ученых из любых городов страны (с условием переезда в Киев), Богомолец вспомнил о Лебедеве. И предложил ему баллотироваться в академики, а также должность директора Института энергетики АН Украины. Алиса Григорьевна, его жена, связанная с музыкальным миром столицы, несмотря на обещание президента предоставить в Киеве хорошую квартиру вместо неудобной и тесной московской, предложила бросить жреоий. К счастью, выпал Киев!

В 1946 г. семья Лебедевых покинула Москву. Через год Институт энергетики разделился на два: электротехники и теплоэнергетики.



Сергей, Алиса Григорьевна, Яков (приемный сын), Сергей Алексеевич, Наталья, Екатерина Лебедевы



Здание в Феофании, в котором размещалась лаборатория С.А. Лебедева

Сергей Алексеевич стал директором первого и добавил к существовавшим лабораториям электротехнического профиля свою лабораторию моделирования и регулирования. Судя по ее названию, он не предполагал сразу развернуть работы по вычислительной технике, предпочитая им привычные исследования в. области технических средств стабилизации и устройств автоматики. Совместно с лабораторией Л.В. Цукерника Лебедев продолжал исследования по управлению энергосистемами. За разработку устройств компаунирования генераторов электростанций, повышающих устойчивость энергосистем и улучшающих работу электроустановок, в 1950 г. С.А. Лебедеву и Л.В. Цукернику была присуждена Государственная премия СССР.

Возможно, к окончательному решению заняться разработкой цифровой ЭВМ С.А. Лебедева подтолкнул М.А. Лаврентьев. Такое мнение высказывали Глушков, Крейн (запрограммировавший совместно с СА. Авраменко первую задачу для МЭСМ: (у'' + у = 0; у(0) = О; у(л) = 0) и О.А. Богомолец. Последний в 1946–1948 гг, выполняя правительственные поручения, несколько раз бывал в Швейцарии. Будучи заядлым радиолюбителем, он собирал интересующие его проспекты и журналы с сообщениями о цифровых вычислительных- утсройствах. Приехав в Киев летом 1948 г, он показал журналы Лаврентьеву, тот — Лебедеву. Может быть, знакомство с рекламой помогло принять давно зревшее решение.

С осени 1948 г. СА. Лебедев ориентировал лабораторию на создание МЭСМ. Продумав основы ее построения, он в январе-марте 1949 г. представил их для обсуждения на созданном им семинаре, в котором участвовали М.А. Лаврентьев, Б.В. Гнеденко, А.Ю. Ишлинский, А.А. Харкевич и сотрудники лаборатории. Предварительно, осенью 1948 г, он пригласил в Киев А.А. Дородницына и К.А. Семендяева для окончательного определения набора логических операций МЭСМ.

Однако наиболее трудной частью работы явилось практическое создание МЭСМ. Думаю, что только разносторонний предыдущий опыт исследований позволил Сергею Алексеевичу с блеском справиться с труднейшей задачей технического воплощения принципов построения ЭВМ.

Один просчет все же был допущен. Под МЭСМ было отведено помещение на нижнем этаже двухэтажного здания, в котором размещалась лаборатория. Когда ее смонтировали и включили под напряжение, шесть тысяч раскаленных электронных ламп превратили помещение в тропики. Пришлось удалить часть потолка, чтобы отвести из комнаты хотя бы часть тепла.

В проектировании, монтаже, отладке и эксплуатации МЭСМ активно участвовали сотрудники лаборатории Лебедева: кандидаты наук Л.Н. Дашевский и Е.А. Шкабара, инженеры С.Б. Погребинский, Р.Г. Офенген-ген, А.Л. Гладыш, В.В. Крайницкий, И.П. Окулова, З.С. Зорина-Рапота, техники-монтажники С.Б. Розенцвайг, А.Г. Семеновский, М.Д. Шулейко, а также сотрудники и аспиранты лаборатории: Л.А. Абалышникова, М.А. Беляев, Е.Б. Ботвиновская, А.А. Дашевская, Е.Е. Дедешко, А.А. Заика, А.И. Кондалев, И.В. Лисовский, Ю.С. Мозыра, Н.А. Михайленко, З.Л. Рабинович, И.Т. Пархоменко, Т.Н. Пецух, М.М. Пиневич, Н.П. Похило, Р.Я. Черняк.

Дашевский и Шкабара — основные помощники С.А. Лебедева — в книге «Как это начиналось» рассказали о том, как создавалась МЭСМ:

«Вначале Сергей Алексеевич разработал и предло. жил генеральную блок-схему машины, которая должна была содержать, как теперь уже стало общепринятым, основные устройства: арифметическое, запоминающее, управляющее, ввода-вывода и некоторые внешние для подготовки и расшифровки информации (с перфолент и перфокарт).

Следует отметить, что большую часть этих проектных работ выполнял Сергей Алексеевич лично, привлекая для разработки структурных схем только своих ближайших помощников. Работы обычно проводились по вечерам и в ночное время у Сергея Алексеевича дома, так как на первых порах много времени занимали организационные дела…

В таком сложном режиме приходилось работать, пока не были закончены структурные схемы всех главных узлов машины.

Все мы, уезжая рано утром на работу, возвращались поздно вечером или вообще не возвращались, оставаясь ночевать в Феофании; в воскресенье (суббота тогда была рабочим днем) тоже часто работали в лаборатории.

Не было опыта подобных работ, негде было узнать или прочесть о них. Дело ведь беспрецедентное. Работа велась с утра до позднего вечера.

… К осени 1951 г. машина „начала нормально дышать“, т. е. достаточно устойчиво выполняла комплексную тестовую программу, и можно было переходить к решению пробных реальных задач.

Первая пробная задача была выбрана из области баллистики с весьма существенными упрощениями (не учитывалось сопротивление воздуха). Программа была составлена работавшими с нами математиками С.Г. Крейном и С.А. Авраменко. При этом контрольный расчет был выполнен ими непосредственно в двоичной системе, что обеспечило возможность проверки машины по циклам и по тактам, наблюдая по сигнализации пульта управления за правильностью выполнения программы.

В это время произошел весьма примечательный эпизод: электронная вычислительная машина впервые обнаружила и локализовала ошибку проводивших контрольный расчет двух высококвалифицированных математиков. При этом математики выполняли расчеты контрольного примера независимо и оба ошиблись в одном и том же месте. Суть расчетов заключалась в следующем: закон движения объекта, имеющего определенную массу и начальную скорость и запускаемого под определенным углом к поверхности, представляет собой уравнение параболы (без учета сопротивления воздуха). Решая это уравнение, можно определить текущие координаты запускаемого объекта в течение всего времени полета, а также расстояние от точки запуска до точки падения. Возможность точного аналитического численного решения этой задачи позволяет проверить работу машины и оценить получаемую точность. Траектория была разбита на 32 отрезка, на каждом из которых рассчитывались координаты объекта.

Вначале все шло хорошо. Результаты машинного расчета во всех 20 двоичных разрядах полностью совпадали с теми, что были получены вручную (это вызывало бурю восторга всех присутствующих), но на восьмом отрезке обнаружилось совершенно незначительное расхождение, которого не должно было быть. Все должно было совпадать абсолютно точно. Многократные повторения расчетов ничего не изменили. Машина давала один и тот же результат, отличавшийся от ручного счета на одну единицу младшего разряда. Все немедленно „повесили носы“. Расхождений не могло быть. Один Сергей Алексеевич, который никогда не верил в „чудеса“, сказал: „Я сам проверю ручной счет до 9-й точки“. И проверил (при расчете в двоичной системе это была очень кропотливая и трудоемкая работа, но он ее никому не передоверил). Он оставил нас в сотый раз проверять расчеты машины, менять режимы, а сам удалился в другую комнату и аккуратнейшим образом в клетчатой ученической тетради выполнил необходимые вычисления. Расчеты продолжались целый день, а на другой он появился улыбающийся (что весьма редко бывало), очки были сдвинуты на лоб (что свидетельствовало об удаче), и сказал: „Не мучайте машину — она права. Не правы люди!“. Оказывается, он все же нашел ошибку в дублировавшемся ручном счете. Все были буквально потрясены и застыли в изумлении, как в заключительной сцене „Ревизора“. С.Г. Крейн и С.А. Авраменко бросились пересчитывать оставшиеся 24 точки, так как расчеты были рекурентными и продолжать дальнейшую проверку при наличии ошибки в ручном счете было бессмысленно. Ее пришлось отложить на следующий день (это событие произошло в 2 часа ночи), и хотя многие энтузиасты не хотели ждать, Сергей Алексеевич не разрешил: „Надо же дать отдохнуть несколько часов машине. Пойдем и мы отдохнем. Завтра все будет в порядке!“. Так оно и было: утром были принесены новые расчеты, и машина их продублировала без всяких расхождений. Это была первая решенная нашей машиной реальная задача.



Л.Н. Дашевский

…В конце 1951 г. в Феофанию из Москвы приехала весьма представительная комиссия АН СССР для приемки в эксплуатацию МЭСМ.

Возглавлял эту комиссию академик М.В. Келдыш. В ее состав входили академики СЛ. Соболев, М.А. Лаврентьев и профессора К.А. Семендяев, А.Г. Курош. Три дня сдавала наша МЭСМ экзамены академической комиссии. И хотя экзамены были не конкурсные, так как конкурентов у нее не было, мы страшно волновались и всеми силами старались удержаться от того, чтобы не стоять под дверьми, как толпы любящих родителей, когда их единственные и ненаглядные чада сдают вступительные экзамены в вуз.

Академики с непроницаемыми лицами проходили из помещения МЭСМ, где они задавали ей всяческие „каверзные задачки“, в кабинет Сергея Алексеевича и там подолгу совещались.

Наконец испытания были закончены и комиссия решила: принять машину с 25 декабря 1951 г. в эксплуатацию. И вышла наша МЭСМ в люди. Ликование было всеобщим.

Тогда же приказом Президиума АН УССР за активное участие в разработке и создании первой отечественной ЭВМ МЭСМ была объявлена благодарность основным участникам этой работы: А.Л. Гладыш, Л.Н. Да-шевскому, В.В. Крайницкому, И.П. Окуловой, С.Б. Погребинскому, З.С. Рапоте, С.Б. Розенцвайгу, А.Г. Семеновскому, Е.А. Шкабаре и сотрудникам Института физики за создание магнитного барабана Р.Г. Офенгенгену и МД. Шулейко.



Е.А. Шкабара

Узнав, что в Феофании есть работающая ЭВМ, потянулась к нам вереница паломников — киевские, московские математики со своими задачами, которые практически не могли быть решены без помощи ЭВМ, и МЭСМ начала круглосуточно решать очень важные в то время задачи.

С.А. Лебедев работал вдохновенно, увлекая сотрудников своим примером, прекрасным знанием дела, которому он посвятил по существу всю жизнь. При отладке МЭСМ он сутками не выходил из лаборатории, подкрепляя себя крепчайшим чаем».

«Время напряженной работы, озаренное счастьем творческого труда с С.А. Лебедевым, я не забуду никогда!» — скажет Е.А. Шкабара при вручении ей и Л.Н. Дашевскому (посмертно) премии им. С.А. Лебедева Академии наук Украины в год 40-летия ввода МЭСМ в эксплуатацию.

Если вспомнить короткие сроки, в которые была спроектирована, смонтирована и отлажена МЭСМ, — два года, и учесть, что в ее разработке и создании участвовали 12 человек (вместе с Лебедевым), которым помогали 15 техников и монтажников (в создании первой американской ЭВМ ЭНИАК помимо 13 основных исполнителей участвовали 200 техников и большое количество рабочих), то становится ясно, что С.А. Лебедев и возглавляемый им коллектив совершили подвиг!

4 января 1952 г. Президиум АН СССР заслушал доклад Лебедева о вводе малой электронно-цифровой счетной машины МЭСМ в эксплуатацию. В выписке из протокола заседания говорится:


Сов. секретно

Экз.

Президиум Академии наук СССР

О вводе в эксплуатацию малой счетной электронной машины.

Докладчик проф. С.А. Лебедев.

Выписка

Президиум Академии наук СССР отмечает, что, согласно постановлению Совета Министров СССР от 1.VII.1951 г. за № 2754-1321с, Институт точной механики и вычислительной техники АН СССР совместно с Институтом электротехники АН УССР в IV квартале 1951 г. ввел в эксплуатацию малую счетную электронную машину, являющуюся первой в СССР быстродействующей электронной цифровой машиной, доведенной до состояния эксплуатации.

Придавая большое значение делу создания современных средств вычислительной техники и необходимости расширения этих работ, Президиум АН СССР постановляет:

1. Доложить Совету Министров СССР о вводе в эксплуатацию первой в СССР быстродействующей счетной электронной машины.

2. За успешную работу по созданию и вводу в эксплуатацию малой счетной электронной машины объявить благодарность руководителю работ действ, чл. АН УССР С.А. Лебедеву, ст. науч. сотр. Е.А. Шкабаре, Л.Н. Дашевскому, инженерам А.Л. Гладыш, В.В. Крайницкому и С.Б. Погребинскому.

3. Обязать Отделение физико-математических наук АН СССР всемерно усилить работу по подготовке к использованию быстродействующих электронных счетных машин в учреждениях Академии наук СССР.

Президент Академии наук СССР академик А.Н. Несмеянов,

Главный ученый секретарь Президиума Академии наук СССР академик А.В. Топчиев.



МЭСМ, за пультом В.В. Крайницкий

В 1952 г. (уже после переезда Лебедева в Москву) Институт электротехники АН Украины представил работу по созданию МЭСМ на соискание Государственной премии. В состав творческого коллектива были включены Лебедев, Дашевский, Шкабара.

Работа, безусловно, заслуживала премии. Жизнь это доказала: разработанные С.А. Лебедевым основы построения ЭВМ без принципиальных изменений используются и в современной вычислительной технике. Теперь они общеизвестны: 1) в состав ЭВМ должны входить устройства арифметики, памяти, ввода-вывода информации, управления; 2) программа вычислений кодируется и хранится в памяти подобно числам; 3) для кодирования чисел и команд следует использовать двоичную систему счисления; 4) вычисления должны осуществляться автоматически на основе хранимой в памяти программы и операций над командами; 5) в число операций помимо арифметических вводятся логические — сравнения, условного и безусловного переходов, конъюнкция, дизъюнкция, отрицание; 6) память строится по иерархическому принципу; 7) для вычислений используются численные методы решения задач. В 1950 г, когда был опробован макет МЭСМ, подобная машина работала лишь в Англии (ЭДСАК, ее автор М. Уилкс, 1949 г.). Причем в ЭДСАК было использовано арифметическое устройство последовательного действия, а в МЭСМ — параллельного, последнее более прогрессивно. Плодотворность идей, заложенных в МЭСМ, была со всей очевидностью подтверждена последующими работами коллективов, возглавляемых С.А. Лебедевым.

Комитет должен был учесть и то, что в 1952 г. МЭСМ была практически единственной в стране ЭВМ, на которой решались важнейшие научно-технические задачи из области термоядерных процессов (Я.Б. Зельдович), космических полетов и ракетной техники (М.В. Келдыш, А.А. Дородницын, А.А. Ляпунов), дальних линий электропередач (С.А. Лебедев), механики (Г.Н. Савин), статистического контроля качества (RE. Гнеден-ко) и др.

Вот один из многих документов, свидетельствующих об этом.

Академия наук
Союза Советских Социалистических республик
Отделение прикладной математики
Математический институт им. В.А. Стеклова

Секретно Экз.

26 ноября 1953 г. № 438с

Директору Института электротехники Академии наук УССР

члену-корреспонденту АН УССР А.Д. Нестеренко.

Дирекция Отделения прикладной математики Математического института им. В.А. Стеклова Академии наук СССР приносит глубокую благодарность Институту электротехники Академии наук УССР за участие в большой и важной вычислительной работе, выполненной с ноября 1952 г. по июль 1953 г. на малой электронной счетной машине конструкции академика С.А. Лебедева. За этот период научная группа Математического института АН СССР под руководством академика А.А. Дородницына и доктора физико-математических наук А.А. Ляпунова совместно с коллективом лаборатории № 1 (руководитель академик С.А. Лебедев) Института электротехники АН УССР провела весьма трудоемкие расчеты по трем сложным программам, выполнив на электронной машине около 50 млн. рабочих операций. Особенно следует отметить добросовестный и напряженный труд заместителя заведующего лабораторией Л.Н. Дашевского, главного инженера Р.Я. Черняка, инженеров А.Л.Гладыш, Е.Е. Дедешко, И.П. Окуловой, Т.Н. Пецух, С.Б. Погребинского и техников Ю.С. Мозыры, С.Б. Розенцвайга и А.Г. Семеновского. Эти сотрудники, не считаясь со временем, приложили много усилий для обеспечения бесперебойной и качественной работы машины.

Директор Отделения прикладной математики МИ АН СССР

академик М.В. Келдыш.


И все же работа премии не получила!

Это был первый, но не последний случай непонимания огромной значимости научного творчества С.А. Лебедева, его вклада в становление и развитие вычислительной техники.

К сожалению, и руководство Академии наук Украины, во главе которого тогда стоял ученый-биолог, не поняло (а может, и не старалось понять) важность работ ученого. Не помог и секретарь ЦК Компартии Украины И.Д. Назаренко, посетивший лабораторию Лебедева в конце 1950 г. Ознакомившись с МЭСМ и дальнейшими перспективами развития и применения цифровой электронной вычислительной техники, он выразил свое удивление и восхищение одним словом: «Колдовство».

Покидая лабораторию, сказал Лебедеву, что будет ждать предложений о развитии работ.

Президиум Академии наук Украины, заслушав через неделю доклад Сергея Алексеевича, послал в Центральный Комитет Компартии Украины письмо с более чем скромными просьбами.

Кстати, такое положение в Академии наук Украины и республике — непонимание и недооценка значения развития вычислительной техники — сохранялось все последующее десятилетие вплоть до появления В.М. Глушкова. Подтверждением этого может служить фраза из письма, посланного сотрудниками бывшей лаборатории Лебедева в ЦК компартии Украины в 1956 rj «Положение с вычислительной техникой в республике граничит с преступлением перед государством…». В числе подписавшихся был и автор этой книги… Так был упущен подготовленный для Украины работами С.А. Лебедева шанс своевременного выхода на передовые позиции в важнейшей области науки и техники XX века.

Понимая значимость работ и сложное положение, в которое попал выдающийся ученый, М.А. Лаврентьев — тогда он был вице-президентом Академии наук Украины и директором Института математики — написал Сталину о необходимости ускорения исследований в области вычислительной техники, о перспективах использования ЭВМ, в том числе для оборонных целей. Результат оказался неожиданным для самого Михаила Алексеевича: его, математика, назначили директором созданного летом 1948 г. в Москве Института точной механики и вычислительной техники (ИТМ и ВТ) АН СССР, которому правительство поручило разработку новых средств вычислительной техники.

Лаврентьев решил использовать опыт Лебедева, наглядно продемонстрировавшего свои творческие возможности. Сергей Алексеевич уже обдумывал и рисовал схемы и временные диаграммы для БЭСМ. В марте 1951 г. Лаврентьев создал в институте лабораторию № 1 и пригласил Лебедева на заведование ею. Так БЭСМ, задуманная и промоделированная в Киеве, стала разрабатываться в Москве…

Сергей Алексеевич в короткой статье «У колыбели первой ЭВМ», посвященной 70-летию М.А. Лаврентьева, высоко оценил его роль в создании МЭСМ и БЭСМ. Он писал: «В первые послевоенные годы я работал в Киеве. Меня только-только выбрали академиком Академии наук УССР, и под городом, в Феофании, создавалась лаборатория, где суждено было родиться первой советской электронно-вычислительной машине. Времена были трудные, страна восстанавливала разрушенное войной хозяйство, каждая мелочь была проблемой. И неизвестно, появился бы первенец советской вычислительной техники (МЭСМ. — Прим. авт.) в Феофании, не будь у нас доброго покровителя — Михаила Алексеевича Лаврентьева, который был тогда вице-президентом Академии наук УССР. Я до сих пор не перестаю удивляться и восхищаться той неукротимой энергии, с которой Лаврентьев отстаивал и пробивал свои идеи. По-моему, трудно найти человека, который, познакомившись с ним, не заражался оы его энтузиазмом.

..Вскоре Михаил Алексеевич назначается директором Института точной механики и вычислительной техники Академии наук СССР. Я был переведен в Москву, и начался новый этап в нашей совместной работе по созданию крупных цифровых электронно-вычислительных машин. Когда машина (БЭСМ. — Прим. авт.) была готова, она ничуть не уступала новейшим американским образцам и являла подлинное торжество идей ее создателей».



Мемориальная доска на здании в Киеве, где располагался Институт электротехники АН Украины

В Приложении 2 приведен (в сокращении) первый раздел из книги С.А. Лебедева, Л.Н. Дашевского, Е.А. Шкабары «Малая электронная счетная машина», ставшей для многих первым учебником по цифровой вычислительной технике.

После МЭСМ началась разработка специализированной ЭВМ (СЭСМ) для решения систем алгебраических уравнений (главный конструктор ЗЛ. Рабинович). Основные идеи построения СЭСМ выдвинул С.А. Лебедев. Это была его последняя работа в Киеве. Впоследствии специализированные ЭВМ (различного назначения) стали важным классом средств вычислительной техники. Это еще раз говорит о прозорливости ученого, выдвинувшего идею специализации ЭВМ на заре их создания.

Когда при отладке БЭСМ у москвичей встретились трудности, Лебедев пригласил в Москву для помощи в запуске машины группу сотрудников из своей бывшей лаборатории (Е.А. Щкабару, С.Б. Погребинского и др.). Это было мудрое решение: опыт и уверенность киевлян передались сотрудникам ИТМ и ВТ АН СССР, и отладка пошла быстрее. Сергей Алексеевич, по рассказам Погребинского, очень заботливо относился к своим помощникам — в редкие свободные дни ездил с ними «на природу» в подмосковные леса, приглашал к себе домой на чаепитие.

После отъезда Лебедева в Москву его ученики в Киеве Дашевский, Шкабара, Погребинский и другие приступили к разработке ЭВМ «Киев». Машина хотя и уступала по характеристикам новой лебедевской ЭВМ М-20, но вполне отвечала требованиям того времени. В 1958 г. бывшую лабораторию С.А. Лебедева возглавил В.М. Глушков. Под его руководством успешно завершилась разработка ЭВМ «Киев», которая долго использовалась в Вычислительном центре АН Украины, развернутом на базе лаборатории. Другой ее экземпляр был закуплен Объединенным институтом ядерных исследований, где также долго и успешно эксплуатировался.

Созданный в 1957 Г; Вычислительный центр АН Украины в 1961 г. был преобразован в Институт кибернетики, который сегодня носит имя его создателя — В.М. Глушкова, продолжившего дело, начатое С.А. Лебедевым.

Выступая на ученом совете Института кибернетики АН Украины, посвященном 25-летию создания МЭСМ, Глушков так оценил значение МЭСМ для развития вычислительной техники на Украине и в стране: «Независимо от зарубежных ученых С.А. Лебедев разработал принципы построения ЭВМ с хранимой в памяти программой. (Публикации в открытой печати принципов построения ЭВМ, разработанных американским ученым Дж. фон Нейманом в 1946 г., стали появляться в 50-х годах. — Прим, авт.) Под его руководством была создана первая в континентальной Европе ЭВМ, в короткие сроки были решены важные научно-технические задачи, чем было положено начало советской школе программирования. Описание МЭСМ стало первым учебником в стране по вычислительной технике. МЭСМ явилась прототипом Большой электронной счетной машины БЭСМ; лаборатория С.А. Лебедева стала организационным зародышем Вычислительного центра АН Украины, а впоследствии Института кибернетики АН Украины».

Усилиями Глушкова и ученых его школы на Украине был восстановлен и многократно умножен научный и промышленный потенциал в области компьютеростроения.

Заслуги С.А. Лебедева перед украинской наукой не забыты. Одна из улиц Киева носит его имя. Академия наук Украины учредила премию его имени. Первым лауреатом ее стал М.А. Лаврентьев. Следующими — В.А. Мельников, З.Л. Рабинович и автор этой книги. На здании, где располагался Институт электротехники АН Украины, директором которого был САЛебедев, установлена мемориальная доска. Выступая в день ее открытия, президент АН Украины академик Б.Е.Патон сказал:

«Мы всегда будем гордиться тем, что именно в Академии наук Украины, в нашем родном Киеве расцвел талант С.А. Лебедева как выдающегося ученого в области вычислительной техники и математики, а также крупнейших автоматизированных систем. Он положил начало созданию в Киеве замечательной школы в области информатики. Его эстафету подхватил В.М. Глушков. И теперь у нас плодотворно работает один из крупнейших в мире Институт кибернетики им. В.М. Глушкова АН Украины.

Он жил и трудился в период бурного развития электроники, вычислительной техники, ракетостроения, освоения космоса и атомной энергии. Будучи патриотом своей страны, Сергей Алексеевич принял участие в крупнейших проектах И.В. Курчатова., С.П. Королева, В.М. Келдыша, обеспечивавших создание щита Родины. Во всех их работах роль электронных вычислительных машин, созданных Сергеем Алексеевичем, без преувеличения, огромна.

Его выдающиеся труды навсегда войдут в сокровищницу мировой науки и техники, а его имя должно стоять рядом с именами этих великих ученых».


Творческое соперничество

Первые «кирпичи» в научный фундамент цифровой вычислительной техники закладывались в Москве. Однако после войны положение изменилось. В конце 40-х годов благодаря работам С.А. Лебедева центр новой науки переместился в Киев.

Когда академик Н.Г. Бруевич отдал приказ, в котором сообщил о своем назначении (16 июля 1948 г.) исполняющим обязанности директора ИТМ и ВТ, организованного в Академии наук СССР, он не знал, что в Киеве полным ходом идет работа по созданию МЭСМ. Первые сведения об ЭВМ в институт пришли в 1949 г. из-за рубежа. В иностранных журналах сообщалось, что в США в 1946 г. была создана первая в мире ЭВМ ЭНИАК, содержащая 18 тыс. радиоламп и выполняющая около 1 тыс. одноадресных операций в секунду. Позднее появились рекламные публикации о разработке Э М с меньшим количеством радиоламп, но большим быстродействием. Поскольку сообщения были очень краткими, то представить по ним принципы построения машин было практически невозможно.

Через год после образования института его работу проверяла комиссия Президиума АН СССР под председательством В.М. Келдыша. Весьма возможно, что причиной этого явилось письмо Лаврентьева Сталину. Комиссия пришла к неутешительному выводу: цифровой электронной вычислительной технике, быстро развивающейся на Западе, уделяется очень мало внимания.

«Подстегнутый» выводами комиссии, Н.Г. Бруевич провел через Бюро Отделения технических наук АН СССР решение об организации в институте отдела быстродействующих вычислительных машин. В сентябре 1949 г. он выделил из своего отдела группу из шести человек, которой поручалась разработка элементов, необходимых для построения цифровых электронных машин.

«… Когда стали макетировать основные узлы ЭВМ — триггеры, счетчик, сумматор с последовательным переносом, вентили, дешифратор, — вспоминает участник этой работы П.П. Головистиков, — появилось много гостей. Я не понимал тогда, почему Бруевич их приглашает. Мне казалось, что результаты еще так малы, что показывать нечего. Среди посетителей в разное время были министр машиностроения и приборостроения СССР Паршин, член коллегии министерства Лоскутов, академик Благонравов и др. Это волновало меня и заставляло работать каждый день с- раннего утра до позднего вечера. Наконец, я стал привыкать к этим визитам. Но одно посещение (последнее) очень запомнилось. Оно состоялось в январе 1950 г. Бруевич привел двух человек. Один, высокий, статный, вел себя, как и все, — внимательно слушал объяснения, а другой, небольшого роста, в очках, меня поразил. Он стал прямо обращаться ко мне и задавать множество вопросов. Просил показать сигналы во многих точках, продемонстрировать время задержки сигналов в разных цепях. Заставил менять частоту генератора, чтобы определить диапазон работы схем. Многое раскритиковал и посоветовал сделать иначе. В довершение всего попросил меня смаке-тировать длинную цепочку управляемых вентилей. И необходимо было сделать так, чтобы каждый вентиль имел дополнительную нагрузку, соответствующую таким ж$ вентилям, чтобы сигнал в. этой цепочке не затухал и цепочка имела минимальную задержку. Так состоялось мое знакомство с Лаврентьевым И Лебедевым. К этому времени я знал, что разработки в области ЭВМ начались в Энергетическом институте АН СССР у И.С. Брука и в недавно созданном СКБ-245 Министерства машиностроения и приборостроения СССР, но для меня было полной неожиданностью, что у Сергея Алексеевича в Киеве в полном разгаре идет разработка первой в СССР ЭВМ».

Узнав, что в Киеве работы по созданию ЭВМ подходят к концу, и желая наверстать упущенное, Н.Г. Бруевич договорился с Министерством машиностроения и приборостроения СССР о сотрудничестве в организации работ по созданию средств вычислительной техники. Был подготовлен проект постановления правительства о совместной разработке цифровой электронной вычислительной машины. От министерства в Москве подключались только что созданные весной 1949 г. три организации, составившие единый и довольно мощный научно-производственный коллектив: Научно-исследовательский институт счетного машиностроения (НИИ Счетмаш), СКБ-245 и завод счетно-аналитических машин (САМ). Директором завода, НИИ Счетмаш и СКБ-245 был назначен М.А. Лесечко.

Несмотря на то, что при создании этих трех организаций им была поставлена задача построения релейной вычислительной машины (по образцу первых американских), Лесечко, обладавший высочайшей инженерной интуицией, согласился с предложением Бруевича совместно спроектировать и организовать серийный выпуск вычислительной машины на электронных лампах. Однако при рассмотрении подготовленного проекта постановления правительства случилось непредвиденное. Присутствующий Л.И. Гутенмахер, руководитель одной из лабораторий ИТМ и ВТ АН СССР, выступил с предложением выполнить машину не на электронных лампах, а на разработанных в его лаборатории безламповых элементах — электромагнитных бесконтактных реле (на основе магнитных усилителей трансформаторного типа). Его предложение вызвало живой интерес у министра П.И. Паршина. Он тут же высказал мысль о том, что если повысить величину тока в питающей обмотке реле, то число витков в трансформаторе сократится до одного и предложенные схемы станут весьма технологичными и очень надежными, поскольку в них нет электронных ламп. Гутенмахер с энтузиазмом поддержал министра. Результатом совещания стал проект постановления правительства о создании двух вычислительных машин — электронной в Академии наук СССР и на элементах Гутенмахера — в министерстве.

Когда в середине марта 1950 г. произошла смена руководства ИТМ и ВТ АН СССР и директором стал М.А. Лаврентьев, он попал в весьма сложное положение: специалистов в области цифровой вычислительной техники в институте единицы, немногочисленные научные отделы разбросаны по Москве, Министерство машиностроения и приборостроения из помощника превратилось в соперника, и вот-вот появится постановление правительства, обязывающее институт разработать цифровую электронную вычислительную машину, — гигантское сооружение



М.А. Лаврентьев (в центре), справа — Г.И. Марчук, слева — В. Новоцны (ПАН)

из многих тысяч ламп, значительно более сложное, чем то, что он видел в Киеве у Лебедева. Не случайно приказом от 20 марта 1950 г. он назначил Лебедева, продолжавшего работать в Киеве, заведующим лабораторией № 1 (по совместительству).

Когда проект постановления правительства о разработке двух ЭВМ представили на утверждение Сталину, он потребовал указать ответственных лиц по каждой из машин. Ими были назначены: от Академии наук СССР М.А. Лаврентьев и главный конструктор электронной вычислительной машины С.А. Лебедев; от Министерства машиностроения и приборостроения М.А. Лесечко и главный конструктор релейной вычислительной машины Ю.Я. Базилевский.

Ситуация, сложившаяся в ИТМ и ВТ АН СССР, вероятно, любому показалась бы безнадежной, но не Лебедеву! Из Киева он привез собственноручно выполненный проект БЭСМ, что подтверждает П.П. Головистиков: «Существует легенда, что вся схема БЭСМ у Сергея Алексеевича была записана на папиросных коробках „Казбек“ или отдельных листках. Это неверно. Она заключалась в толстых тетрадях (и не одной). В них самым скрупулезным образом были изображены все структурные схемы машины, приведены временные диаграммы работы блоков, подробно расписаны все варианты выполнения отдельных операций. Приехав из Киева, он этот огромный объем информации начал передавать нам.

— Мне совершенно по-другому представился смысл той работы, которой я занимался, — продолжает Петр Петрович. — Он поручил мне разработку арифметического устройства, но хотел, чтобы я знал работу и других блоков, К.С. Неслуховскому — устройство управления, для чего надо было знать работу машины в целом. Поскольку Неслуховский занимался устройством управления и машиной в целом, он стал фактически заместителем Сергея Алексеевича по техническим и другим вопросам (позднее заместителем Лебедева по лаборатории стал В.В. Бардиж, переведенный из лаборатории Гутенмахера).

При обеспечении института кадрами Лаврентьев и Лебедев сделали ставку на студентов-практикантов из вузов. Они были зачислены в штат института и сразу получили конкретные инженерные задания: смакетировать блок управления командами (В.С. Бурцев), блок центрального управления операциями (В.А. Мельников), блок местного управления операциями (А.Г. Лаут), датчик основных сигналов машины (С.А. Кузнецов), арифметическое устройство (АУ) чисел (А.Н. Зимарев), АУ порядков (В.П. Смирягин), запоминающее устройство (ЗУ) на потенциалоскопах (ВЛЛаут), усилители считывания и записи к потенциалоскопу (И.Д. Визун), устройства внешней памяти (А.С. Федоров и позднее Л.А. Орлов). Таким образом, все основные устройства машины для предварительного макетирования были обеспечены исполнителями. Поскольку в это время подготавливались тома эскизного проекта, в которых студенты принимали участие (каждый по своему разделу), то их материал с незначительными изменениями в соответствии с требованиями вуза становился дипломной работой.

На конец 1950 г. пришелся разгар работ по изготовлению макетов отдельных устройств БЭСМ. Всего в составе лаборатории № 1 к весне 1951 г. насчитывалось около 50 человек. Источником высококвалифицированных кадров был главным образом Московский энергетический институт: в 1951 г. начали работать А.В. Аваев, с апреля 1952 г. — И.Д. Алексеев, М.В. Тяпкин, В.Ф. Петров, З.А. Московская, позднее — В.К. Зейденберг, с июля 1952 г. — В.С. Митрофанов, А.А. Соколов, Ю.И. Синельников, В.С. Чукаев, Ю.П. Никитин и др. Из Московского университета пришли Г.Т. Артамонов, В.В. Кобелев. Все они сразу включились в работы, связанные с БЭСМ. По воскресеньям всем коллективом благоустраивали территорию института».

Канд. техн. наук O.K. Гущин (тогда техник-монтажник) тепло вспоминает, как под руководством Лебедева формировался молодой коллектив ИТМ и ВТ АН СССР: «Мне кажется, все гордились участием в большом и важном деле — создании первенца отечественной вычислительной техники, по тем временам гигантского устройства, эдакого „электронного чуда“ с сотнями тысяч деталей. Не надо забывать, что самой сложной бытовой радиоэлектронной аппаратурой в то время был КВН-49 — только что появившийся первый отечественный телевизор.

Работа кипела днем и ночью, никто не считался с личным временем. Мы макетировали элементы и узлы БЭСМ. Сами изготавливали шасси и стенды, сверлили и клепали; монтировали и отлаживали различные варианты триггеров, счетчиков, сумматоров и проверяли их на надежность в работе.

На всех этапах работы Сергей Алексеевич показывал личный пример самоотверженности. После насыщенного трудового дня он до 3–4 часов ночи просиживал за пультом или осциллографом, активно участвуя в отладке машины. Работая в смене дежурным техником, я не раз наблюдал, как Сергей Алексеевич брал в руки паяльник и перепаивал схемы, внося в них необходимые изменения. На все предложения помочь он неизменно отвечал: „Сам сделаю“. После его ухода я „по своим прямым обязанностям“ проверял его работу, и, надо сказать, она всегда была выполнена на совесть. Меня поражали простота, внимательность и чуткость Сергея Алексеевича».



Благоустройство территории института. Слева — С.А. Лебедев (50-е гг.)

Но и Гутенмахер, ободренный поддержкой министра, упорно работал. В начале 1950 г. он представил в СКБ-245 эскизный проект вычислительной машины на феррит-диодных элементах, разработанных в соответствии с рекомендацией министра. К этому времени ситуация в министерстве, на его беду, резко изменилась. В СКБ-245 появился Б.И. Рамеев, разработавший еще в 1948 г. (до начала работ по МЭСМ) в соавторстве с И.С. Бруком проект цифровой ЭВМ с программным управлением (это был первый в нашей стране проект электронной ЭВМ!).

Рамеев сразу подключился к работам. И очень быстро подготовил аванпроект ЭВМ на электронных лампах. Далее события развивались весьма своеобразно. Технический совет СКБ-245 в отсутствии Рамеева рассмотрел проект Гутенмахера. Затем заслушали Рамеева (при отсутствии Гутенмахера). Итогом стало решение — создавать ЭВМ на электронных лампах, а не на элементах Гутенмахера. У БЭСМ появилась серьезная соперница — ЭВМ «Стрела». Б.И. Рамеева назначили заместителем Ю.Я. Базилевского, главного конструктора этой машины. Баширу Искандаровичу было тогда 32 года. За его плечами был трудный путь сына «врага народа», выдворение со второго курса института, служба в армии и неуемное желание работать (см. главу о Б.И. Рамееве).

Так у Лебедева появился конкурент-триумвират: Лесечко, Базилев-ский, Рамеев, а у ИТМ и ВТ АН СССР мощный соперник — СКБ-245 вместе с заводом САМ и НИИ Счетмаш. Центр тяжести работ по цифровой вычислительной технике переместился из Киева в Москву.

Остается добавить, чем завершилась работа по феррит-диодной ЭВМ. Л.И. Гутенмахер, лишившись поддержки СКБ-245, продолжал работу собственными силами. В его лаборатории в ИТМ и ВТ АН СССР была спроектирована и создавалась параллельно БЭСМ вычислительная машина на феррит-диодных элементах. Позднее, где-то году в 1954-м, мне удалось ознакомиться с ней, когда она уже работала. Ее производительность была невысокой. Вследствие низкого качества элементов надежность работы также оставляла желать лучшего. Импульсный источник питания был громоздок и неэкономичен. Под предлогом секретности вход в лабораторию был практически запрещен. В начале 60-х годов она была закрыта. Строгая секретность, которую вносил Гутенмахер в свои исследования, привела к тому, что о его машине мало кто знает. Тем не менее — это определенная веха в истории вычислительной техники.

21 апреля 1951 г. была назначена Государственная комиссия для приемки эскизных проектов БЭСМ (ИТМ и ВТ АН СССР) и «Стрелы» (СКБ-245), в состав которой входили академик М.В. Келдыш (председатель), министр машиностроения и приборостроения П.И. Паршин, академик А.А. Благонравов и др. Предварительно члены комиссии побывали в Киеве, где Сергей Алексеевич продемонстрировал уже работающую МЭСМ. Детальный анализ проектов был проведен в Москве. Члену комиссии А.А. Дородницыну запомнился забавный спор, возникший на одном из заседаний. Главный конструктор «Стрелы» Базилевский заявил, что она, обладая производительностью 2 тыс. операций в секунду, за четыре месяца решит все задачи, имеющиеся в стране. Поэтому БЭСМ с ее высокой производительностью (8-10 тыс. операций в секунду) не нужна! Сергей Алексеевич едко парировал, что из-за низкой производительности «Стрела» не успеет просчитать задачу за время между двумя сбоями и будет выдавать неверные решения, а БЭСМ успеет!

Обе стороны успешно защитили эскизные проекты. В ИТМ и ВТ АН СССР было принято решение о создании экспериментального образца машины. Сергей Алексеевич, учитывая опыт создания и эксплуатации МЭСМ, предложил для БЭСМ мелкоблочный принцип конструкции, что являлось смелым решением, поскольку многие машины в то время делались не на сменных блоках. Количество разных типов блоков получилось небольшим.

Началось конструирование и изготовление стоек, плат, блоков машины. Если бы они завершились успешно, а для этого необходимо было лишь одно — поставка промышленностью потенциалоскопов (39 штук) для ЗУ, — то БЭСМ оказалась бы вне конкуренции не только в стране, но и в мире. Ее производительность 10 тыс. операций в секунду оказалась бы в пять раз выше, чем у «Стрелы». Такой скорости вычислений еще не достигала ни одна машина. Однако этого не случилось. Сказалось монопольное положение Министерства машиностроения и приборостроения СССР. Оно не посчиталось с интересами коллектива ИТМ и ВТ АН СССР, науки и страны в целом и обеспечило потенциалоскопами лишь разработчиков «Стрелы». Создатели БЭСМ были поставлены в затруднительное и к тому же унизительное положение. Можно представить себе состояние Сергея Алексеевича — подойти совсем близко к цели и получить такой удар! Он всегда поступал иначе, стремился помочь, в том числе СКБ-245. Когда представители последнего, и среди них главный конструктор «Стрелы» Базилевский, были в Киеве, Сергей Алексеевич подробно ознакомил их с МЭСМ, помог связаться с Институтом физики АН Украины и договориться о разработке накопителей на магнитных лентах. Не скрывались и работы, связанные с БЭСМ. Соперники же вели себя иначе. Бывший сотрудник СКБ-245 Ф.Н. Зыков вспоминает, что когда Лебедев приехал в СКБ-245 ознакомиться со «Стрелой», ему показали… подготовленную к отправке, упакованную в ящики машину.

Лебедев решил использовать запасной вариант — ЗУ на акустических (ртутных) трубках (РЗУ). Это снизило производительность БЭСМ до уровня «Стрелы» и добавило немало забот. Масса ртути для РЗУ полного объема должна была составлять несколько сотен килограммов. РЗУ включало 70 ртутных трубок длиной около метра: 64 хранящих, одна трубка следила за тактовой частотой, 5 были запасными (ртутные трубки были разработаны в 1949 г. по его заказу в Институте автоматики ВСНИТО). Все трубки размещались в огромном термостате, смонтированном в специальном помещении с вытяжными шкафами, где выполнялись работы с ртутью. Электронная часть каждого тракта собиралась в стандартном крупном блоке. Значительные размеры имели панели управления, блоки питания. Внушительных размеров стойка РЗУ занимала целую комнату, расположенную в конце коридора первого этажа, довольно далекого от АУ, связь с которым осуществлялась по кабелям, тщательно распаянным на фольге. Большой пульт РЗУ включал растровый индикатор, позволяющий просматривать содержимое каждого из 64 трактов, очень украшавший пульт и упрощавший жизнь сменного инженера. Отладка РЗУ осложнялась еще тем, что в нем аналоговые и электронные схемы работали в одной, замкнутой в кольцо цепи. Большую помощь в доводке РЗУ, по воспоминаниям Е.П. Ландера, оказал Лебедев, «переселившийся» в комнату, где размещалось РЭУ, почти на два месяца. Сергей Алексеевич принимал конструктивные решения, не останавливаясь на полумерах, шел на большие дополнительные механические и монтажные работы.



БЭСМ



Группа сотрудников ИТМ и ВТ АН СССР в день награждения за создание БЭСМ в Кремле, 1956 г. Слева направо: сидят — Ю.А. Крицкий, В.В. Бардиж, Ю.Д. Панов, А.Ф. Горкин, С.А. Лебедев, К.М. Озолин, М.А. Лаврентьев, С.И. Судариков, В.В. Похлебкин, В.Д. Горчев; стоят — Г.А. Хавкин, П.А. Зольников, В.И. Ерофеев, В.К. Зайденберг, А.Н. Зимарев, З.А. Московская, О.П. Васильев, Е.П. Ландер, П.П. Головистиков, М.П. Сычева, А.М.Чепурнов, А.С. Федоров, Ю.В. Никитин, B.C. Заборовский, И.И. Осипов, А.К. Соцков.

Летом 1952 г. изготовление машины в основном было завершено. Началась наладка. В ней участвовали все разработчики машины. Работа велась круглосуточно. Главным источником неисправностей была электронная лампа: многие лампы выходили из строя в первые часы работы. Но если лампа проработала в машине несколько сотен часов, ее выход из строя становился маловероятным.

В I квартале 1953 г. БЭСМ была налажена, а в апреле была принята Государственной комиссией в эксплуатацию.

«Стрела» была закончена в эти же сроки и рекомендована для серийного изготовления. Ее создатели получили три Государственных премии I, II и III степени, а главный конструктор машины Ю.Я. Базилевский — звание Героя Социалистического труда.

Опытная эксплуатация БЭСМ началась в I квартале 1953 г. Инженеров-наладчиков заменили математики. Хотя первое время машина работала с пониженной производительностью, на ней было решено много важных народнохозяйственных задач.

По рекомендации академика Лаврентьева, ставшего вице-президентом АН СССР, Сергея Алексеевича в 1953 г. назначили директором ИТМ и ВТ АН СССР и избрали действительным членом АН СССР. Сын Отто Юльевича Шмидта, Сигурд Оттович, подымая тост на банкете по поводу избрания новых членов Академии, сказал: «Сегодня мы выбрали в академики двух замечательных ученых — С.А. Лебедева и А.Д. Сахарова!».

В 1956 г., когда БЭСМ была принята Государственной комиссией вторично (с памятью на потенциалоскопах), С.А. Лебедеву присвоили звание Героя Социалистического труда, основные разработчики были награждены орденами.

Первый вычислительный центр

В феврале 1955 г. Совет Министров СССР принял постановление о создании первого Вычислительного центра АН СССР. Его директором был назначен академик А.А. Дородницын, которому были переданы две ЭВМ: БЭСМ, изготовленная в ИТМ и ВТ АН СССР, и «Стрела», находящаяся в Математическом институте им. В.А. Стеклова. И «Стрела», и БЭСМ работали круглосуточно, но не могли справиться с потоком задач, каждая из которых была важнее другой. План расчетов на ЭВМ составлялся на неделю и утверждался Председателем Совета Министров СССР Н.А. Булганиным. По рассказам Дородницына, нередко число командированных превышало количество сотрудников в штате Вычислительного центра (их было 69). Сюда приезжали не только решать задачи, но и учиться программированию. Поэтому вскоре кроме первых двух ЭВМ появились «Урал-1» и «Урал-2», используемые в основном для обучения.

По инициативе президиума АН СССР была создана комиссия для сравнения характеристик БЭСМ и «Стрелы». Ее выводы были однозначными: БЭСМ лучше и перспективнее. И только после этого ИТМ и ВТ АН СССР стал получать потенциалоскопы, но это был уже конец 1954-го — начало 1955 г. Как только ЗУ было укомплектовано потенциалоско-пами, БЭСМ заработала на полную мощность. Даже спустя два года БЭСМ оставалась на уровне лучших американских машин и была самой быстродействующей в Европе! Она выполняла в среднем 8 тыс. трехадресных операций в секунду. Максимально возможная ее производительность составляла 10 тыс. операций в секунду.

В 1956 г. доклад С.А. Лебедева о БЭСМ на конференции в немецком городе Дармштадте произвел сенсацию: малоизвестная за пределами СССР БЭСМ оказалась лучшей в Европе!

В 1958 г. БЭСМ была подготовлена к серийному производству. Память на потенциалоскопах была заменена ферритным ЗУ. Машина получила название БЭСМ-2, выпускалась одним из заводов Казани, ею оснащалось большинство крупных вычислительных центров страны. Судьба «Стрелы» была иной. Было выпущено всего семь ее экземпляров. Экземпляр, работавший в Вычислительном центре АН СССР, был отдан Московской кинофабрике для постановки фильмов. Никто другой взять не захотел.

«Хорошая будет машинка!»

Задержка серийного выпуска БЭСМ произошла не только вследствие жесткой политики Министерства машиностроения и приборостроения СССР, вознамерившегося всеми правдами и неправдами завоевать лидерство в новой области техники. «Виноватой» оказалась и новая ЭВМ М-20, задуманная С.А. Лебедевым вскоре после «поражения» в соревновании с министерством. Цифра в названии указывала на ожидаемую производительность (20 тыс. операций в секунду). Такой скорости вычислений не имела ни одна машина в мире. Ее, а не БЭСМ, предполагал Лебедев запустить в серийное производство. Были все основания рассчитывать на успех: заканчивалась разработка новых быстродействующих элементов, появились весьма совершенные феррит-ные ЗУ, коллектив разработчиков вырос и накопил большой опыт. К тому же (и это было главным) Сергей Алексеевич добился постановления правительства, обязывавшего СКБ-245 работать совместно с ИТМ и ВТ АН СССР. Последнему было предписано разработать идеологию машины, ее структуру, схемы, элементную базу, СКБ-245 — техническую документацию и изготовить опытный образец. Главным конструктором был назначен С.А. Лебедев, его заместителем — М.К. Сулим (СКБ-245).

Начали работать над машиной трое: С.А. Лебедев, М.Р. Шура-Бура и П.П. Головистиков. Лебедев разрабатывал идеологию машины, ее структуру, Шура-Бура составлял систему команд, занимался проработкой математических вопросов, Головистиков превращал их решения в конкретные схемы, основанные на разработанных им динамических элементах (на пальчиковых лампах), составлял схемы АУ и устройства управления. Быстро появились структура машины, система команд, схемы основных устройств. Было использовано много новых логических операций, что значительно облегчало программирование, введена модификация адресов. Для увеличения быстродействия в АУ разрабо-

тана цепь грубого переноса, дополнявшая сквозной перенос. В результате время выполнения элементарной операции сложения значительно сократилось. Сдвиги можно было производить непосредственно на 1, 2, 4 разряда, что значительно ускоряло выравнивание порядков и нормализацию результатов при операции сложения (вычитания). Эти и многие другие новшества мало отражались на количестве ламп. Увеличивалось в основном количество диодов, но к тому времени они уже были не ламповые, а полупроводниковые (германиевые), небольших размеров и надежные в эксплуатации.

«Хорошая будет машинка!» — вырвалось как-то у Сергея Алексеевича. Эта фраза запомнилась Головистикову.



П.П. Головистиков (50-е гг.)

Одновременно велись работы по созданию ферритного ЗУ (В.В. Бардиж, А.С. Федоров, М.П. Сычева и др.), устройств внешней памяти и периферийных устройств (А.Р. Валашек, Н.П. Зубрилин, М.В. Тяпкин и др.).

В конце 1955 г. в институте началось изготовление макета машины. В 1956 г. проводилась его наладка, в которой участвовали сотрудники не только лаборатории № 1, но и других организаций. Многие предприятия были заинтересованы в скорейшем окончании работ. Страна очень нуждалась в машинах подобного класса.

К началу 1957 г. изготовление опытного образца машины в СКБ-245 было закончено. Всем пришлось переключиться на наладку опытного образца ЭВМ М-20. Как и при наладке БЭСМ, самое активное участие в ней принимал Лебедев. Все организационное обеспечение наладки осуществлял Сулим. Однако не все шло так гладко, как в начале разработки. Многократно проверенные на малых макетах динамические элементы в большом комплексе почему-то стали работать ненадежно. Это было замечено еще при наладке макета ЭВМ М-20 в институте, но детально причины ненадежности выяснены не были, так как следовало начинать наладку опытного образца. В СКБ-245 были недоброжелатели машины М-20 (конечно, вне коллектива разработчиков и наладчиков), которые распространяли мнение о непригодности динамических элементов и неправильно выбранной элементной базе, предлагали идти обычным путем, т. е. использовать большое количество ламп. Некоторое разочарование испытывал и Сергей Алексеевич: все шло так хорошо, быстро и вдруг — затор. Возникли неприятности у Сулима с начальством СКБ-245, требовавшим скорейшего окончания работ.

Сложившаяся ситуация с ЭВМ М-20 привела Сергея Алексеевича к решению о запуске в серийное производство БЭСМ. Этому способствовали появившиеся благоприятные обстоятельства, во много раз уменьшавшие объем работ по организации серийного производства БЭСМ: имелись готовые конструктивы машины М-20, пригодные и для БЭСМ, были созданы надежные пальчиковые лампы с характеристиками ламп, применяемых в БЭСМ, и высоковольтные германиевые диоды, позволявшие без всяких изменений схем заменить ламповые диоды, использованные в БЭСМ; на выходе было ферритное ЗУ ЭВМ М-20, которое могло быть успешно использовано в БЭСМ вместо потенциа-лоскопов.

Подготовкой серийного производства машины занимались ведущие разработчики БЭСМ: К.С. Неслуховский, А.Н. Зимарев, В.А. Мельников, А.В. Аваев и др., не занятые работами на М-20 и специализированных машинах. Они проделали работу по запуску машины в серию за два-три квартала, чему способствовала существовавшая тогда простая система технической документации.

Итак, в первой половине 1958 г. появилась серийная машина БЭСМ-2, внешне очень похожая на М-20.

Однако тревожная обстановка на ЭВМ М-20 царила не долго. Элементы машины были усовершенствованы (П.П. Головистиковым, В.Н. Лаутом, А.А. Соколовым).

Так или иначе, к началу 1958 г. М-20 заработала надежно; в том же году она была успешно принята Государственной комиссией с оценкой «самая быстродействующая в мире» и запущена в серию. Получилось так, что М-20 и БЭСМ-2 появились почти одновременно. Потребность в быстродействующих вычислительных машинах была так велика, что М-20 обеспечивали только самые важные работы в стране. Производство БЭСМ-2 намного снижало вычислительный голод.

Работа коллективов ИТМ и ВТ АН СССР и СКБ-245, создавших М-20, была выдвинута на соискание Ленинской премии. Однако М-20 постигла судьба МЭСМ… Работу отклонили. Почему, не берусь судить. Знаю только, что член Государственной комиссии бывший директор ИТМ и ВТ АН СССР Н.Г. Бруевич высказал в дополнение к акту о приемке ЭВМ М-20 особое мнение. Сославшись на то, что в США уже несколько лет работает ЭВМ «Норк», выполняющая 20 тыс. операций в секунду (что было неверно!), и «забыв» о том, что в М-20 1600 ламп вместо 8000 в американской, он дал согласие на серийный выпуск М-20, но в то же время выразил сомнение в высоких качествах машины, что могло повлиять на решение комиссии по Ленинским премиям.

«Везло» Сергею Алексеевичу на «творческих» соперников!

При подготовке рукописи я побывал у одного из немногих еще живущих сейчас создателей М-20 П.П. Головистикова. Петр Петрович с большой теплотой рассказывал о Лебедеве, его умении увлечь сотрудников творческой работой, большом обаянии личности ученого, о годах создания БЭСМ и М-20, о том, как жил в те годы, а точнее — ютился в полуподвальном крохотном помещении, и как счастье творчества делало жизнь одухотворенной, позволяло не замечать жизненных неудобств. В конце разговора я не удержался, спросил, есть ли у него какие-либо критические замечания по отношению к своему учителю. «Одно есть! — сказал Головистиков. — После завершения работ по БЭСМ и М-20 меня назначили заведующим лабораторией новых элементов, и я был вынужден заниматься организационной работой в ущерб научным исследованиям. Думаю, что из-за этого я сделал для науки, пожалуй, меньше, чем мог!». Мы оба посмеялись: если бы только такими недостатками страдали большие руководители!

Как и Сергея Алексеевича, его интересовали не должности, не награды, а ДЕЛО — возможность творить, создавать новые, все более и более совершенные ЭВМ.

М-20 зарекомендовала себя с самой лучшей стороны. Не случайно позднее появились ее «близнецы» — полупроводниковые М-220 и М-222, повторившие ее архитектуру и структуру (главный конструктор М.К. Сулим, СКБ-245).



Г.А.Михайлов

Послевоенный ренессанс

То, как трудились С.А. Лебедев и коллективы, которыми он руководил, было скорее правилом, чем исключением. Не мне и не авторам тех замечательных работ приписывать им прилагательное «героический», но задуматься на их примере о том, каков КПД дел современных, от чего и кого он зависит и чем определяется, вполне уместно и небесполезно. Об одной из таких давних историй, практически не замеченной современниками и впоследствии забытой, хочется рассказать, чтобы еще раз пояснить обстановку того времени и добавить несколько слов о том, как воспринимали С.А. Лебедева современники.

Мало кто знает, что в ноябре 1953 г., т. е. через полугодие после завершения отладки БЭСМ, в Институте атомной энергии была введена в действие и в течение семи лет успешно эксплуатировалась первая в стране ЭВМ последовательного действия ЦЭМ-1. Решение о ее разработке сформировалось почти случайно. Академику Сергею Львовичу Соболеву, крупнейшему математику (в ту пору заместителю Курчатова), попал в руки американский журнал с описанием ЭВМ ЭНИАК. Шел 1950 г. Вероятно, ему было кое-что известно о разработках отечественных ЭВМ «Стрела» и БЭСМ, начавшихся в то время. Ученый передал журнал руководителю измерительной лаборатории института Н.А. Явлинскому. После чего журнал оказался в руках молодого специалиста, три года назад окончившего Ивановский энергетический институт, Геннадия Александровича Михайлова. Среди скудных зарубежных публикаций он разыскал еще две или три статьи в английских журналах о машине ЭДСАК, построенной в Кембриджском университете. Однако в них приводились лишь блок-схема и паспортные данные машины.

Двоичная система счисления в те времена тоже б, ыла откровением, не говоря уже о программировании. Не было и литературы по численным методам решения задач. Была еще одна трудность: бригада, проектировавшая, монтировавшая и потом налаживавшая машину, включая Михайлова, состояла из четырех человек — двух инженеров и двух техников.

Так же как все схемы первых ЭВМ (МЭСМ и БЭСМ) были разработаны самим Лебедевым, так и схемы ЦЭМ-1 были составлены Михайловым. Иной вариант в тех условиях «не проходил».

В ЦЭМ-1 сразу же была задействована оперативная память на 128 двоичных 31-разрядных чисел на ртутных линиях задержки по 16 чисел в каждой, с последовательной выборкой на частоте 512 кбит/с. Емкость памяти позднее была доведена до 496 чисел и добавлено внешнее ЗУ — 4096 чисел на магнитном барабане. Ввод и вывод данных были организованы на основе телеграфного аппарата СТ-35, цифропечать на телеграфной ленте дублировалась 5-дорожечной перфолентой; ввод данных — с такой же перфоленты через фотосчитывающее устройство на приличной скорости. За режимами в основных блоках машины можно было наблюдать на осциллографе-мониторе — прообразе современных дисплеев. Средняя скорость выполнения операций сложения и вычитания 495 операций в секунду, умножения и деле. ния — 232. В машине было задействовано около 1900 радиоламп, потреблявших около 14 кВт. Размещалась она в шести металлических стойках-шкафах размерами порядка 80x180x40 см каждый. Вопреки опасениям ЦЭМ-1 работала вполне надежно. Основное беспокойство доставляли ртутные трубки — при длине 1000 мм и диаметре кварцевого акустического излучателя 18 мм нужно было постоянно следить и за острой направленностью ультразвукового луча, и за уровнем отражений от приемного кварца. А таких трубок было 32. Еженедельная профилактика обеспечивала достаточно надежную эксплуатацию.

Можно с полным правом утверждать, что, несмотря на ряд публикаций в зарубежных журналах, разработка ЭВМ в те годы оставалась самостоятельной, оригинальной, основанной на догадках и изобретательности. ЦЭМ-1 во многом отличалась от ЭДСАК: по-иному было реализовано умножение (с округлением), введена операция деления (без восстановления остатка), одноадресная система команд заменена двухадресной. Это, кстати, было сделано по предложению С.А, Лебедева уже в период наладки машины — пришлось переделать часть монтажа. Совершенно оригинальной оказалась система модификации команд посредством «признаков» — она очень способствовала сжатию программ, что при ограниченной оперативной памяти имело огромное значение.

Одну из первых программ составил С.Л. Соболев — интегрирование дифференциальных уравнений методом Рунге-Кутта — для обретения навыков программирования. Г.А. Михайловым были разработаны набор программ ввода-вывода, диагностики, а также «потребительские» программы для вычисления интегралов, решения систем уравнений, обращения матриц и др.



В день избрания академиком

Далеко не сразу ЦЭМ-1 получила признание даже в родных стенах. Руководитель одного из отделений института — академик Лев Андреевич Арцимович, талантливейший физик, экспериментатор и теоретик, прекрасно владея аналитическим математическим аппаратом, вполне мог позволить себе скептическое отношение к таким новациям. Но пришло время, когда и он убедился в полезности и силе ЭВМ: в конце 1954 г. ГА. Михайлов запрограммировал и решил уравнение, составленное СМ. Осовцом (из команды теоретиков МЛ. Леонтовича), которое описывает процесс сжатия плазменного шнура в экспериментах по управляемому термоядерному синтезу. Арцимович поначалу забраковал результат — ускоряющееся сжатие с наложенными на него колебаниями, однако после трех-четырех дней теоретического анализа пришел к такому же результату, а еще неделю-другую спустя из архивов были извлечены осциллограммы, отвергнутые ранее жак брак эксперимента, подтверждающие этот неожиданный эффект.

Позднее на ЦЭМ-1 было выполнено немалое количество расчетов по режимам атомных реакторов, расчету дозиметров и пр. С машиной ознакомились С.А. Лебедев, АЛ. Ляпунов, МД. Миллионщиков и др.

Рассказ Г.А. Михайлова добавляет новые штрихи к портрету Сергея Алексеевича.

«В 50-е годы, работая рядовым инженером в Институте атомной энергии им. Курчатова, довелось мне оказаться знакомым со многими нашими выдающимися учеными, с кем-то близко, лично — с СЛ. Соболевым, ЛЛ. Арцимовичем, МЛ. Леонтовичем, кого-то видеть на расстоянии, слушать их доклады, выступления (VLB. Курчатов, HJC Кикоин, НЕ. Тамм, А.Ф. Иоффе, RB. Тимофеев-Ресовский, молодой АД. Сахаров.).

Приятно вспомнить, что моими экзаменаторами перед защитой кандидатской диссертации были академики Арцимович и Лебедев — по вычислительной технике. Одним словом, в памяти сохранились многие яркие личности из нашей науки 50-60-х годов. И вот боюсь, что среди них Сергей Алексеевич Лебедев по сугубо внешним признакам оказался бы совершенно неприметен — ни статью, ни волевым лицом… В том-то и дело, что, как мне кажется, эта незаметность — при очень мощном таланте — и была главной внешней отличительностью Сергея Алексеевича.

О нем как исключительно талантливом ученом впервые я услышал от своих коллег по лаборатории. Все мы во главе с Н.А. Явлинским переселились в Институт атомной энергии из ВЭИ, где работал Лебедев. Явлинский и Лебедев дружили и сами, и семьями, пока Явлинский, его жена и сын не погибли в 1962 г. в авиакатастрофе. Благодаря этой дружбе посчастливилось видеть Сергея Алексеевича и на семейных празднествах. И здесь он оставался неприметным. О славословии, лести, даже тщательно замаскированной, не могло быть и речи».

В 1959 г. Г.А. Михайлов переехал в Киев, стал руководителем отдела в Вычислительном центре АН Украины (ныне Институт кибернетики им. В.М. Глушкова АН Украины). Он продолжает: «Летом 1961 г. Сергей Алексеевич, по-видимому, в последний раз приезжал в Киев, с которым многое его связывало. Был он в нашем Вычислительном центре, уже переселившемся из Феофании на Лысогорскую. Организовали — ему поездку в Феофанию, почти в одиночку, на озеро, в лес. К тому времени почти все главное им было уже сделано: он стал академиком, лауреатом Ленинской премии, Героем соцтруда… Казалось бы, в самый раз рассчитывать только на почести, да еще не в столице. Но ничего подобного и в помине не было: торжественных сборов, встреч, банкетов и пр. — ничего этого он бы не потерпел. Из его визита и для нас не делалось секрета, но, наверное, совсем немногие о нем знали.

И уж совсем смущенным выглядел он на своем юбилее в конференц-зале ИТМ и ВТ АН СССР в подаренных узбекском халате и тюбетейке.

Ни от кого не довелось слышать о нем плохого слова. И вместе с тем нельзя было назвать его безграничным добряком. На том самом экзамене, о котором упомянуто выше, Сергей Алексеевич преспокойно „влепил“ своему же аспиранту заслуженную двойку. Помнится, в беседе о защите диссертаций он заметил не без иронии про свой институт: „А у нас — разделение труда: одни делают машины, другие защищаются“.

Посетив нашу лабораторию и дотошно оглядев ЦЭМ-1, Сергей Алексеевич удивил нас вопросом: „А кувалдочкой вы по ней не стучите?“. Оказалось, что на БЭСМ кувалда — это штатный инструмент, а удары ею по железному каркасу машины — один из элементов профилактики! Столь же удивительным теперь показался бы приказ не допускать решения задачи дольше 15 минут без повторного пересчета с тем, чтобы не расходовать машинное время впустую».

Все описанное выше относится к ЭВМ на электронных лампах, или ЭВМ первого поколения. Второе поколение создавалось на безламповых элементах. Первыми полупроводниковыми ЭВМ семейства БЭСМ стали БЭСМ-ЗМ и БЭСМ-4.

Интересно отметить, что их появление также явилось результатом энтузиазма молодых. Дело в том, что работы по их созданию проводились в СКВ ИТМ и ВТ АН СССР инициативно, сверх плана молодыми инженерами и техниками.

По воспоминаниям одного из участников разработки А.А. Грызлова, в 1964 г. относительно небольшая группа молодых сотрудников, среди которых были инженеры, техники и самоучки, получила задание освоить первые полупроводниковые элементы. Это был этап в подготовке сотрудников СКВ к предстоящей работе по БЭСМ-6. Вначале им было поручено для накопления опыта разработать макеты основных узлов ЭВМ. В дальнейшем группа решила проверить созданные ими узлы в комплексе, изготовив небольшой макет машины. Он был собран и получил название БЭСМ-ЗМ. Окрыленные успехом новички осмелели. Возникла дерзкая идея: создать на базе имеющегося макета «свою» машину, повторяющую структурно-логическую схему ЭВМ М-20, но с использованием новых элементов. Инициативу молодежи поддержал руководитель тогдашнего СКВ О.П. Васильев. Лебедев не противился замыслу «неоперившейся» молодежи. Так появилась БЭСМ-4. Ее создание — еще один пример творческой и доброжелательной атмосферы, характерной для лебедевского института.

Государственная комиссия под председательством А.А, Дородницына отметила высокие эксплуатационные и конструктивные качества первой отечественной полупроводниковой универсальной ЭВМ. Она отличалась надежностью, малыми размерами, низкой стоимостью и имела большой успех у пользователей.

Когда через год после ее установки в Вычислительном центре АН СССР поинтересовались, как она работает, ответ был такой: «Ваша машина разлагает молодых инженеров. Они не выполняют профилактических работ, так как машина не имеет сбоев — она слишком надежна». Комментарии излишни.

Триумф ученого

После завершения работ по ламповым БЭСМ-2 и ЭВМ М-20 началось проектирование полупроводниковой БЭСМ-6 — шедевра творчества коллектива ИТМ и ВТ АН СССР, первой супер-ЭВМ второго поколения. С.А. Лебедеву — главному конструктору БЭСМ-6 — активно помогали его ученики, ставшие заместителями и выросшие к этому времени в известных молодых ученых, — В.А. Мельников и Л.Н. Королев.

Был тщательно изучен и проанализирован мировой опыт проектирования ЭВМ сверхвысокой производительности. Все, что соответствовало целям, поставленным при разработке машины, было взято на вооружение. По инициативе и при активном участии Лебедева было проведено математическое моделирование будущей машины. Исходя из намечаемого для нее комплекса задач определены состав устройств, их внутренние связи, система команд, тщательно отработаны полупроводниковые элементы.



БЭСМ-6

Результатом явилась оригинальная и удобная для программирования система команд, простая внутренняя структурная организация БЭСМ-6, надежная система элементов и конструкция, упрощающая техническое обслуживание. Такой подход к решению сложных технических задач не потерял своего значения и сейчас. Его можно сформулировать как принцип обоснованности принятых решений, которому СА. Лебедев следовал всю жизнь.

БЭСМ-6 стала первой отечественной вычислительной машиной, которая была принята Государственной комиссией с полным математическим обеспечением. В его создании принимали участие многие ведущие специалисты страны. Лебедев одним из первых понял огромное значение совместной работы математиков и инженеров в создании вычислительных систем. Значение этого становится очевидным, когда разработка эффективной вычислительной техники перерастает из проблемы инженерно-технологической в проблему математическую, которую можно решить только совместными усилиями инженеров и математиков.

Наконец — и это тоже важно, — все схемы БЭСМ-6 по инициативе СА. Лебедева были записаны формулами булевой алгебры. Это открыло широкие возможности для автоматизации проектирования и подготовки монтажной и производственной документации. Она выдавалась на завод в виде таблиц, полученных на БЭСМ-2, где проводилось и моделирование структурных схем. В дальнейшем система проектирования была существенно усовершенствована, благодаря работам ГТ. Рябова (система «Пульс»).



Лауреаты Государственной премии за разработку БЭСМ-6 С.А. Лебедев и В.А. Мельников

Основные принципиальные особенности БЭСМ-6: магистральный, или, как в 1964 г. назвал его СА. Лебедев, водопроводный принцип организации управления; с его помощью потоки команд и операндов обрабатываются параллельно (до восьми машинных команд на различных стадиях); использование ассоциативной памяти на сверхбыстрых регистрах, что сократило количество обращений к ферритной памяти, позволило осуществить локальную оптимизацию вычислений в динамике счета; расслоение оперативной памяти на автономные модули, что дало возможность одновременно обращаться к блокам памяти по нескольким направлениям; многопрограммный режим работы для одновременного решения нескольких задач с заданными приоритетами; аппаратный механизм преобразования математического адреса в физический, что дало возможность динамически распределять оперативную память в процессе вычислений средствами операционной системы; принцип полистовой организации памяти и разработанные на его основе механизмы защиты по числам и командам; развитая система прерывания, необходимая для автоматического перехода с решения одной задачи на другую, обращения к внешним устройствам, контроля их работы.

В электронных схемах БЭСМ-6 использовано 60 тыс. транзисторов и 180 тыс. полупроводников-диодов. Элементная база БЭСМ-6 по тем временам была совершенно новой, в ней были заложены основы схемотехники ЭВМ третьего и четвертого поколений. Принцип разделения сложной машинной логики, построенной на диодных блоках, от однотипной усилительной части на транзисторах обеспечили простоту изготовления и надежность работы. Среднее быстродействие машины достигло 1 млн. операций в секунду.

Макет БЭСМ-6 был запущен в опытную эксплуатацию в 1965 г., а уже в середине 1967 г. первый образец машины был предъявлен на испытания. Тогда же были изготовлены три серийных образца. Благодаря совместной работе с заводом-изготовителем фактически не потребовалось времени на доводку машины и подготовку ее к серийному производству.



А.А. Соколов



Л.Н. Королев

Государственная комиссия под председательством М.В. Келдыша, в то время президента Академии наук СССР, принимавшая БЭСМ-6, дала машине высокую оценку.

На основе БЭСМ-6 были созданы центры коллективного пользования, системы управления в реальном масштабе времени, координационно-вычислительные системы телеобработки и т. д. Она использовалась для моделирования сложнейших физических процессов и процессов управления, а также в системах проектирования для разработки математического обеспечения новых ЭВМ. Принятые при ее создании принципиальные технические решения обеспечили ей завидное долголетие: БЭСМ-6 выпускалась промышленностью 17 лет! Машины снискали заслуженную любовь пользователей и в 70-х годах составляли основу парка высокопроизводительных ЭВМ.

При советско-американском космическом полете «Союз-Аполлон» управление осуществлялось новым вычислительным комплексом, в состав которого входили БЭСМ-6 и другие мощные вычислительные машины отечественного производства, разработанные учениками С.А. Лебедева. Если раньше сеанс обработки телеметрической информации длился около получаса, то на новом комплексе это делалось за одну минуту, вся информация обрабатывалась почти на полчаса раньше, чем у коллег в США.

Это был настоящий триумф С.А. Лебедева, его учеников, его школы, создавших первоклассную ЭВМ, способную соперничать с лучшими компьютерами мира! Основные участники разработки БЭСМ-6 (С.А. Лебедев, В.А. Мельников, Л.Н. Королев, Л.А. Зак, В.Н. Лаут, А.А. Соколов, В.И. Смирнов, А.Н. Томилин, М.В. Тяпкин) получили Государственную премию.



М.В. Тяпкин



Л.А. Зак



А.Н. Томилин



В.И. Смирнов


Когда готовилась эта книга, мне в руки попались сочинения немецкого философа Ницше. Одно из его высказываний привлекло особенное внимание: «Уметь дать направление — признак гениальности». Мне сразу вспомнился С.А. Лебедев, предугадавший основные направления и перспективы развития ЭВМ. Ученики Сергея Алексеевича Л.Н. Королев и В.А. Мельников в статье «Об ЭВМ БЭСМ-6» говорят о том же, только более определенно: «Гениальность С.А. Лебедева состояла именно в том, что он ставил цель с учетом перспективы развития структуры будущей машины, умел правильно выбрать средства для ее реализации применительно к возможностям отечественной промышленности» (Управляющие системы и машины. 1976, № 6).

«Чтобы не было войны»

Вычислительная техника с первых дней возникновения стала использоваться в военных целях. С.А. Лебедев был главным конструктором вычислительных средств системы противоракетной обороны страны (ПРО).

Важное значение работ в области ПРО, намного опережавших в то время уровень зарубежной военной техники, привело к тому, что имя Лебедева как главного конструктора вычислительных средств ПРО было засекречено. Лишь в 1990 г. — через 16 лет после смерти — о его участии в создании первых в стране систем ПРО было сказано в газете «Советская Россия» от 5 августа (статья Г.В. Кисунько «Деньги на оборону»).

Можно с уверенностью сказать, что если БЭСМ-2, М-20, БЭСМ-6, установленные во многих вычислительных центрах, обеспечили в послевоенные годы быстрое развитие научных исследований и решение наиболее сложных задач научно-технического прогресса, то специализированные ЭВМ, разработанные под руководством С.А. Лебедева, стали основой мощных вычислительных комплексов в системах противоракетной обороны. Полученные в те годы результаты были достигнуты за рубежом лишь много лет спустя. Взяться за военную тематику заставила «холодная» война, развернувшаяся в послевоенный период. Сергей Алексеевич не мог остаться в стороне от запросов времени. К тому же выполнение оборонной тематики позволяло улучшить материальное и финансовое положение института и за счет этого ускорить и расширить исследования по созданию мощных универсальных ЭВМ для оснащения вычислительных центров страны, что всегда было главной задачей ИТМ и ВТ АН СССР.

Еще 15 января 1951 г., находясь в Киеве, С.А. Лебедев направил письмо в президиум АН Украины, в котором говорилось: «Институтом электротехники Академии наук Украины в 1950 г. разрабатывается макет быстродействующей электронной счетной машины. Быстродействующие электронные счетные машины позволяют с колоссальной скоростью и большой точностью решать самые разнообразные задачи, например, в области внутриатомных процессов, реактивной техники, радиолокации, авиастроения, строительной механики и других отраслях.

Быстрота и точность вычислений позволяют ставить вопрос о создании устройств управления реактивными снарядами для точного поражения цели ггутем непрерывного решения задачи встречи в процессе полета управляемого реактивного снаряда и внесения корректив в траекторию его полета».

Президиум АН Украины не сумел оказать действенной помощи в развитии работ, — шло восстановление народного хозяйства республики, средств не хватало. Не было и понимания важности проблемы со стороны руководства республики. После переезда в Москву, став директором ИТМ и ВТ АН СССР, С.А. Лебедев приступил к осуществлению своего давнего замысла.



B.C. Бурцев

Все началось с того, что, когда работы по отладке БЭСМ подходили к концу, Сергей Алексеевич, захватив с собой молодого специалиста Всеволода Сергеевича Бурцева, отличившегося при отладке БЭСМ и привязавшегося к ученому как к отцу (в годы войны Бурцев лишился родителей), появился в одном из московских НИИ, разрабатывавших радиолокаторы. Результатом явилось создание в 1952–1955 гг. двух специализированных ЭВМ «Диана-1» и «Диана-2» для автоматического съема данных с радиолокатора и автоматического слежения за воздушными целями. Дальнейшим развитием этих работ явилось создание целой серии ЭВМ, предназначенных для систем ПРО.

Заместителем и ответственным исполнителем по работе Лебедев назначил Бурцева. Доверие, проявленное Сергеем Алексеевичем, огромное желание не подвести своего наставника умножили силы и энергию молодого специалиста.

Ламповая ЭВМ М-40 (40 тыс. операций в секунду), в которую он вложил огромный труд, заработала в 1958 г., опережая на несколько месяцев М-20. Немного позднее появилась М-50 (с плавающей запятой). Машины имели мультиплексный канал, позволяющий принимать для обработки (асинхронно) данные по шести направлениям. На базе этих ЭВМ была создана первая советская система ПРО.

Генеральным конструктором первой системы ПРО был 35-летний Г.В. Кисунько. Некоторые научные авторитеты посмеивались над его замыслом — сбить летящую ракету снарядом!

Он говорил как специалист, увидевший такую перспективу в соединении радиолокационной техники с зарождающейся электронно-вычислительной — научных отраслей, которые могли стать основой новой системы обороны. Г.В. Кисунько возглавил группу энтузиастов по разработке и обоснованию принципов ПРО. В течение года ей предстояло решить несколько сложнейших задач. Как находить баллистическую ракету и эффективно следить за ней — столь стремительной и небольшой по размерам? Как организовать автоматическое взаимодействие удаленных друг от друга объектов ПРО? Как с достаточной скоростью обрабатывать информацию и принимать верные решения? Как успешно сбивать цель? Ответить на эти вопросы вместе с Григорием Васильевичем взялись талантливые ученые и конструкторы, в том числе и С.А. Лебедев. Родилась идея создать экспериментальный комплекс ПРО — так называемую систему А.



С.А. Лебедев с дочерьми Екатериной (слева) и Натальей

Западнее озера Балхаш сотни километров земли отняла у людей каменистая безводная пустыня. Летом здесь плюс сорок в тени, среди живого вокруг — фаланги, змеи, скорпионы. Сюда в 1956 г. прибыли строители противоракетного полигона. За ними потянулись промышленники, затем военные испытатели — тысячи людей. Пустыня стала «условной Москвой», окруженной системой ПРО, по которой должны были стрелять из Капустина Яра, Плесецка. Задача испытателей — развернуть экспериментальную технику, а затем обнаруживать в небе и сбивать нацеленные на пустыню ракеты. Полигон неофициально называли Сары-Шаган, по названию ближайшего населенного пункта. Закипела настоящая фронтовая работа. Строители жили в землянках. Воды мало, пыльных бурь много. Так же много, как и дел, на которые отводилось по-фронтовому мало времени. Строили почти все одновременно: железнодорожные ветки, автодороги, линии электропередач, прокладывали связь, возводили военные и гражданские объекты, поднимали городок испытателей.

Надо отдать должное не только прозорливости, но и смелости Кисунько, Лебедева, Бурцева, взявшихся осуществить, казалось бы, невозможное.

Достаточно вспомнить хотя бы то, какими несовершенными были в то время ламповые ЭВМ. Когда Кисунько увидел БЭСМ, он посчитал, что эта «самоделка» не имеет перспективы серийного производства, и решил ориентироваться на «Стрелу». С СКВ-245 был заключен договор о разработке специализированной ЭВМ на базе «Стрелы». На всякий случай был заключен договор и с институтом Лебедева. На Балхаше, в здании, где должны были размещаться обе машины, огромный зал разделили на две части. Но вскоре генеральный конструктор понял, что половина зала, отведенная для СКБ-245, останется пустой, а ученые академии умеют не только писать научные статьи, но и решать сложные практические задачи: в зале появилась ЭВМ М-40!

Всего через год на полигоне вошел в строй первый локатор, успешно фиксировавший все учебные пуски ракет в стране. А спустя еще два года начались стрельбы противоракет при полном составе системы А. Ее компонентами стали невиданные для тех лет радиолокаторы с мощнейшим энергетическим потенциалом, автоматизированная система управления на базе быстродействующей М-40, высокоскоростные и маневренные противоракеты со средствами точнейшего наведения, электроника с цифровым кодированием. Не все поначалу ладилось, да и недоброжелатели не дремали, памятуя, что Кисунько — сын репрессированного кулака. Но в конце концов наступил день, который участники работ запомнили на всю жизнь.

— Цель уже в небе, ее ведут все локаторы, вскоре поступит команда на пуск противоракеты. Программист жмет кнопку запуска. Отметка цели на экране. Следом — пуск противоракеты. Спустя несколько минут табло высветило сигнал «Подрыв цели». На следующий день данные кинофоторегистрации подтвердили: головная часть баллистической ракеты развалилась на куски!

Это событие явилось настоящим прорывом в военном деле, науке, даже в политике. На одной из пресс-конференций Н.С. Хрущев вроде бы между прочим, но так, чтобы поняли все, заметил: «Наша ракета, можно сказать, попадает в муху в космосе». Для многих тогда осталось загадкой — всерьез ли он говорит. Ведь о таком безъядерном поражении баллистической ракеты за рубежом даже не думали. Столь значительное продвижение СССР в области ПРО заставило американцев искать возможности для заключения договора по ограничению ПРО, который появился в 1972 г. и стал первым «разоруженческим» соглашением послевоенного времени!

Однажды дочь Сергея Алексеевича спросила: «Зачем ты делаешь ЭВМ для военных»? — «Чтобы не было войны!» — ответил отец.

За всем этим стоит колоссальная многолетняя работа многих коллективов, в том числе лебедевского. В.С. Бурцев провел на полигоне, где была создана система А, не один год. Бывал там Сергей Алексеевич, и не раз. И никогда не пытался выделиться, работал наравне со всеми.

Создатели первой системы ПРО получили Ленинскую премию. Среди них были Г.В. Кисунько, С.А. Лебедев и В.С. Бурцев.

Впоследствии ламповые ЭВМ были заменены полупроводниковыми. К ним добавилась трехпроцессорная ЭВМ производительностью 1,5–2 млн. операций в секунду. Это была первая в стране ЭВМ на интегральных схемах. Осуществилась еще одна мечта С.А. Лебедева, высказанная в Киеве (А.И. Кондалеву, Р.Г. Офенгенгену): сделать ЭВМ миниатюрными, надежными, широкоприменяемыми (машина занимала 2,5 м3). Опыт создания первой ЭВМ третьего поколения послужил базой для конструирования семейства хорошо известных супер-ЭВМ «Эльбрус». Название было предложено С.А. Лебедевым. Увлечение горами оставалось. Предстояло покорить еще одну вершину, но теперь уже в науке. Не успел…



Титульный лист брошюры С.А. Лебедева с его автографом

Краткие характеристики универсальных и специализированных ЭВМ, созданных под руководством С.А. Лебедева, приведены в Приложении 3.

Научная школа С.А. Лебедева

В 50-60-х годах в области отечественной вычислительной техники эффективно развивалось несколько направлений. Наиболее известными были научные школы С.А. Лебедева, В.М. Глушкова, И.С. Брука и Б.И. Рамеева («Пензенская школа»).

Научная школа Лебедева возникла как результат огромного труда ученого и его творческих сподвижников по созданию сверхбыстродействующих универсальных и специализированных ЭВМ — наиболее сложных классов средств вычислительной техники.

Появление нового научного направления и, тем более, научной школы — сложный творческий процесс. Создание научной школы Лебедева может служить классическим примером.

Среди ученых в нашей стране и за рубежом нет человека, который, подобно Лебедеву, обладал столь мощным творческим потенциалом, чтобы охватить период от создания первых ламповых ЭВМ, выполнявших лишь сотни и тысячи операций в секунду, до сверхбыстродействующих супер-ЭВМ на полупроводниковых, а затем интегральных схемах. За двадцать лет под его руководством было создано пятнадцать высокопроизводительных — наиболее сложных — ЭВМ, и каждая — новое слово в вычислительной технике: более производительная, более надежная и удобная в эксплуатации (см. Приложение 3).

С первых шагов творческой деятельности он выдвинул и все последующие годы последовательно проводил в жизнь генеральный принцип построения таких машин — распараллеливание вычислительного процесса. В МЭСМ и БЭСМ с этой целью использовались арифметические устройства параллельного действия. В М-20 и М-40 добавилась возможность работы внешних устройств параллельно с процессором. В БЭСМ-6 появился конвейерный (или «водопроводный», как назвал его Лебедев) способ выполнения вычислений. В последующих ЭВМ — многопроцессорность и т. д. и т. п. (упомянуты лишь главные этапы в распараллеливании вычислительного процесса, без детализации).

Каждая новая ЭВМ была результатом радикальной переработки предыдущей с критическим осмыслением всего нового, что появилось в стране и за рубежом и с «оглядкой» на возможности отечественной технологии и промышленности. Простой перевод ЭВМ с одной элементной базы на другую, более совершенную, не приносил ученому творческого удовлетворения. Не случайно сверхплановая полупроводниковая БЭСМ-4, повторявшая структуру и команды М-20, не получила от него высокой оценки. Он не мог не поддержать инициативу молодежи создать первую полупроводниковую ЭВМ, но сам в это время вместе со своими помощниками (А.Н. Томилиным и др.) уже моделировал будущую БЭСМ-6, стремясь теоретически обосновать структуру и параметры новой машины. «ЭВМ надо разрабатывать, предварительно рассчитывая ее», — об этом он сказал сразу же после создания БЭСМ и неуклонно следовал этому принципу.



Первое детище С.А. Лебедева — МЭСМ. За пультом Л.Н. Дашевский (справа) и С.Б. Погребинский (Киев, 1951 г.)



Коллектив создателей БЭСМ-6 (слева направо): Валентин Лаут, Александр Томилин, Лев Королев, Владимир Смирнов, Андрей Соколов, Валентин Иванов, Леонид Зак, Владимир Мельников, Сергей Лебедев, Владимир Семешкин.


С.А. Лебедев умел доводить задуманную идею до практического воплощения и прививал это качество своим ученикам. Интересно проследить, как менялись формы такого обучения.

На первых порах, когда он был фактически единственным специалистом, представлявшим принципы построения и работы ЭВМ, то в процессе проектирования, наладки и запуска в эксплуатацию машины (например, МЭСМ, БЭСМ, М-20) он выступал как главный конструктор, как инженер-отладчик, а если требовали обстоятельства, — как техник-монтажник. Иначе говоря, учил живым, наглядным примером. Позднее, с появлением достаточно квалифицированных специалистов, Лебедев доверял им значительную часть работ, оставляя себе наиболее трудные участки, связанные с обоснованием нововведений, с теоретическим обоснованием структуры и параметров ЭВМ.

Нетрудно представить, с какой колоссальной отдачей работал коллектив лебедевского института эти два десятилетия! Что помогало сотрудникам выдержать такой темп, воодушевляло на творческие искания, вливало силы во время многомесячной круглосуточной отладки каждой машины, и позднее, при установке их на различных объектах, где условия были далеки от нормальных?

На первое место следует поставить выдающуюся роль Сергея Алексеевича как блестящего научного руководителя. Он, как никто другой в то время, очень глубоко разобрался в новой области науки и техники, очень четко ставил цели коллективам разработчиков, активно, с полным знанием дела участвовал в их достижении.

Ученый обладал большим инженер-ным опытом и интуицией, которые позволили ему самому убедиться (и убедить других) в возможности слаженной работы тысяч электронных ламп, на которых строились первые ЭВМ. Он сам являл пример беззаветного служения науке, не чурался черновой, вспомогательной работы, если этого требовало дело. Всегда находил общий язык с теми, с кем работал.

Наконец, он умел подобрать кадры и наиболее эффективно организовать работу сотрудников. И в Киеве, и в Москве имел двух-трех помощников, имевших достаточные творческие и организаторские способности, а остальной коллектив подбирал из молодых специалистов, только что окончивших учебные институты, увлекая их новизной и грандиозностью своих замыслов.



Сергей Алексеевич в своем саду (60-е гг.)

Сопутствующим, но важным фактором была новизна и перспективность проблемы создания цифровой техники. Этот фактор действовал не только в стенах ИТМ и ВТ АН СССР, но и в других организациях. Тем более, что вычислительная техника развивалась прямо на глазах, обещая все новые и новые эффективные применения, содействуя техническому прогрессу и творческому росту исследователей. Многочисленные публикации С.А. Лебедева сыграли в этом очень большую роль.

Немаловажным было и творческое соревнование, которое шло между различными организациями, разрабатывающими ЭВМ, и стремление идти вровень с достижениями за рубежом.

В Киеве в распоряжении С.А. Лебедева была лаборатория из нескольких десятков человек.

В Москве его стараниями молодая научная организация — ИТМ и ВТ АН СССР — превратилась в лидера компьютеростроения, осуществился замысел ученого: организация широкого фронта исследований в области вычислительной техники. В целях подготовки кадров специалистов по инициативе С.А. Лебедева в Московском физико-техническом институте была создана кафедра вычислительной техники. Базовой организацией для нее стал ИТМ и ВТ АН СССР. Эту кафедру Сергей Алексеевич возглавлял до 1973 г. Как заботливый садовник (а он и был1 таким на своей даче в Подмосковье), растил он молодые кадры. Обширные знания позволяли ему самые сложные вещи объяснять легко и просто. Его глубокая порядочность, кристальная честность оказывали на студентов большое воспитательное воздействие.

Не получившие своевременного признания и должной поддержки МЭСМ и БЭСМ предстали в свете последующих достижений лебедевского коллектива как основополагающие работы в области вычислительной техники, что содействовало росту авторитета ученого и возглавляемого им коллектива.



Главный конструктор доволен: «за спиной» БЭСМ-6! Рядом с С.А. Лебедевым участники разработки В.А. Иванов (слева) и В.И. Семешкин (1968 г.)


ИТМ и ВТ АН СССР стал широко известен не только в стране, но и за рубежом.

Постепенно, хотя и с опозданием, приходило официальное признание заслуг. При полном безразличии С.А. Лебедева к наградам и несмотря на противодействие со стороны некоторых недоброжелателей, их было немало: ордена Ленина (1954,1962,1972), звание Героя Социалистического труда (1956), Ленинская премия (1966), Государственная премия СССР (1969), орден Октябрьской Революции (1971).

Вместе с Сергеем Алексеевичем высокие награды получили многие сотрудники ИТМ и ВТ АН СССР.

Научная школа создается тогда, когда у ученого, ее основателя, появляются ученики, вырастающие в ученых, способных вести самостоятельные исследования, продолжая дело, традиции, замыслы учителя.

«Птенцы» Лебедева, выращенные в ИТМ и ВТ АН СССР, оказались достойными учениками, стали крупными учеными.

В Москве с Сергеем Алексеевичем работал Владимир Андреевич Мельников, который активно участвовал в разработке и отладке БЭСМ. Был ответственным исполнителем при создании БЭСМ-2, помогал воспроизвести ее в Китае. Сергей Алексеевич, убедившись в недюжинных способностях ученика, начиная разработку БЭСМ-6, назначил его своим заместителем. После завершения работ по БЭСМ-6 Мельников стал вместе с С.А. Лебедевым и А.А. Соколовым главным конструктором вычислительной системы АС-6, совместимой по программному обеспечению с БЭСМ-6. Созданная в короткие сроки вычислительная система АС-6 воплотила в себе многие идеи, составившие основу будущих супер-ЭВМ. Она использовалась совместно с БЭСМ-6 в космической программе «Союз-Аполлон» и последующих запусках космических кораблей. Мельников был избран членом-корреспондентом, а затем действительным членом Академии наук СССР (теперь РАН), награжден орденом Ленина (1956), двумя орденами Трудового Красного Знамени (1971 и 1976), лауреат Государственных премий (1969 и 1980), а также лауреат Премии президиума АН Украины им. С.А. Лебедева. С 1976 г. работал директором Института проблем кибернетики РАН и являлся главным конструктором супер-ЭВМ «Электроника СБИС». В 1993 г. скоропостижно скончался.



С.А. Лебедев (второй слева) во время поездки в Англию (Кембридж, 1964 г.)


«Ас отладки» В.С. Бурцев оказался асом и в науке. Когда он представил ученому совету диссертацию на соискание ученой степени кандидата технических наук (она обобщала опыт создания ЭВМ «Диана-1» и «Диана-2»), то ученый совет единогласно проголосовал за присвоение ему звания доктора наук. Своей самоотверженной работой он завоевал полное доверие у С.А. Лебедева и стал его< надежным помощником во втором направлении работ ученого — создании высокопроизводительных управляющих и информационных комплексов для объектов ПРО и центров контроля космического пространства.

Когда С.А. Лебедева не стало, Бурцев был назначен директором ИТМ и ВТ АН СССР. Продолжая дело своего учителя, много сил отдал созданию семейства супер-ЭВМ «Эльбрус» и дальнейшему развитию работ в области ПРО. Был избран членом-корреспондентом, а затем действительным членом РАН. С 1986 г. — директор Вычислительного центра коллективного пользования при президиуме РАН.



С.А. Лебедев принимает группу грузинских ученых. Второй слева — президент АН СССР А.Н. Несмеянов


Под его руководством разрабатывается супер-ЭВМ, использующая новейшие принципы оптической обработки информации с автоматическим распараллеливанием процессов обработки информации в многомашинных и многопроцессорных комплексах. Принцип распараллеливания вычислений, выдвинутый Лебедевым, получил в работах его ученика логическое развитие.

В.С. Бурцев награжден четырьмя орденами, лауреат Ленинской и двух Государственных премий, а также лауреат Премии президиума АН Украины им. С.А. Лебедева.

Лебедевскую школу прошли и сохраняют ей верность десятки, если не сотни специалистов. Часть из них уже на пенсии, часть еще работает у В.А. Мельникова (Л.Н. Королев, В.П. Иванников, Л.Н. Томилин и др.), у В.С. Бурцева (И.К. Хайлов, В.И. Перекатов, В.Б. Федоров, В.П. Торчигин, Ю.Н. Никольская и др.). Большинство же связало жизнь с ИТМ и ВТ АН СССР им. С.А. Лебедева РАН (Г.Г. Рябов, В.И. Рыжов, В.В. Бардиж, ГШ. Головистиков, ВЛ. Лаут, А.С. Федоров, А.А. Соколов, М.В. Тяпкин, В.И. Смирнов и др.). К сожалению, рамки книги не позволяют рассказать обо всех подробно.

Супер-ЭВМ, в разработках которых Сергей Алексеевич и руководимый им коллектив вложили столько труда, были и остаются ведущим классом машин в вычислительной технике.

ИТМ и ВТ АН СССР им. С.А. Лебедева РАН бережно хранит традиции, заложенные и развитые Сергеем Алексеевичем. Институт не сдал своих позиций: вслед за супер-ЭВМ «Эльбрус-1» и «Эльбрус-2» вступает в строй супер-ЭВМ «Эльбрус 3–1», выполняющая 1 млрд. операций в секунду. Такая скорость вычислений делает ее одной из самых быстрых в мире! Супер-ЭВМ «Эльбрус 3–1» воплотила в себе лучший отечественный опыт.

Учитывались и достижения вычислительной техники за рубежом. Мне же хочется отметить ту особенность, которая делает честь создателям мощного вычислительного комплекса: математическое обеспечение «Эльбруса 3–1» может расширяться за счет огромного количества программ, наработанных для БЭСМ-6! Это достигается при включении в его состав супер-ЭВМ «Эльбрус-5» (руководитель работы М.В. Тяпкин) — микроэлектронной копии БЭСМ-6. Ученики сохранили и умножили то, что было сделано при учителе.



Г.Г. Рябов, директор ИТМ и ВТ им. С.А. Лебедева РАН


В разработку новой эффективной техники много труда и творческого вдохновения вложили главный конструктор комплекса — директор ИТМ и ВТ АН СССР им. С.А. Лебедева РАН с 1986 г., чл. — кор. РАН Геннадий Георгиевич Рябов, а также главные конструкторы оснорных машин комплекса д-ра техн. наук Андрей Андреевич Соколов и Марк Валерианович Тяпкин. Последним ученая степень докторов наук была присвоена без защиты диссертаций. Оба они отличились еще в годы создания БЭСМ и БЭСМ-6, а сегодня, по единодушному мнению, это специалисты самой высокой квалификации, «золотой фонд» института. Прекрасно работает большой коллектив их молодых помощников.

Система автоматизации проектирования ЭВМ, разработанная под руководством Г.Г. Рябова, помогла своевременно и качественно осуществить проектирование комплекса. За ее создание группе сотрудников института во главе с Г.Г. Рябовым была присуждена Государственная премия.

В большинстве других организаций сложилось иное положение. Слепое копирование зарубежной техники, отказ от сотрудничества с европейскими странами не прошли даром не только для тех, кто этому способствовал, но и нанесли труднопоправимый ущерб научно-техническому прогрессу в области наиболее широко используемых классов вычислительной техники и электронному машиностроению в целом.

Нет пророков в своем отечестве!

В 60-х годах в СССР развернулась дискуссия, связанная с переходом к ЭВМ третьего поколения (на интегральных схемах). Большинство участников дискуссии сходилось на мнении, что следует создать ряд (семейство) совместимых (программно и аппаратно) ЭВМ. Но на этом согласие кончалось.

С.А. Лебедев, доказавший многолетней работой правоту своих идей и умение предсказывать перспективы развития вычислительной техники, предлагал создать ряд малых и средних ЭВМ и независимо от него вести разработку супер-ЭВМ (в силу больших отличий структуры, архитектуры, технологии супер-ЭВМ).



Во время посещения фирмы IBM по приглашению Вильяма Майера — вице-президента компании. У консоли ЭВМ IBM705 слева направо: В.С.Полин, С.Н.Мечгелян (АН Армении), С.А.Лебедев, В.М.Глушков, Ю.Я.Базилевский (зам. министра приборостроения СССР), В.С.Петров, апрель 1959 года.


Лебедев, Глушков и их сторонники считали, что накопленный опыт и созданный к тому времени значительный производственный потенциал позволяют кооперироваться с основными производителями вычислительной техники в Западной Европе, чтобы совместными усилиями перейти к разработке ЭВМ четвертого поколения ранее, чем это сделают американцы.

Противники С.А. Лебедева предлагали идти другим путем — повторить созданную несколько лет назад американскую систему третьего поколения IBM-360. Среди них не было ученых такого веса как Лебедев и его сторонники, но зато были люди, представляющие власть, а следовательно, принимающие решение. Было принято постановление правительства создать Единую систему ЭВМ (ЕС ЭВМ) по аналогии с семейством машин IBM-360. Институт Лебедева в постановлении не упоминался. Когда оно готовилось, его составители пытались уговорить Сергея Алексеевича участвовать в создании единого ряда ЭВМ. Ученый, посоветовавшись с ведущими специалистами, ответил отказом, добавив с никогда не покидавшим его чувством юмора: «А мы сделаем что-нибудь из ряда вон выходящее!», — давая понять, что он не прекратит своих работ по созданию супер-ЭВМ.

Вероятно, решение о копировании IBM-360 не имело бы особых последствий, если бы к этому времени у ИТМ и ВТ АН СССР и других организаций, разрабатывающих вычислительную технику, не появился соперник, претендующий на ведущую роль, — Научно-исследовательский центр электронной Вычислительной техники (НИЦЭВТ). Его создание связано с именем Михаила Кирилловича Сулима. В сорок с небольшим лет он был назначен заместителем министра радиопромышленности. Прекрасно понимая значение вычислительной техники для народного хозяйства, развернул кипучую деятельность по созданию промышленного и научного потенциала в этой области. Его стараниями в 1967 г. было подготовлено и принято постановление правительства, предусматривающее строительство заводов в различных республиках страны по выпуску средств вычислительной техники (в дополнение к существующим) и создание ряда научно-исследовательских организаций, в том числе, как отмечалось выше, мощного НИЦЭВТ.



Памятник на могиле С.А. Лебедева и А.Г. Лебедевой


По замыслу Сулима, в его состав должны были войти основные организации — разработчики вычислительной техники, в том числе СКБ-245, НИИ Счетмаш, ИТМ и ВТ АН СССР и др. Но план не удался.

НИЦЭВТ был развернут в основном на базе СКБ-245 — давнего соперника ИТМ и ВТ АН СССР. И это сказалось на судьбе обеих организаций и развитии вычислительной техники в целом.

Если институт С.А. Лебедева шел собственным путем и имел на то основания, так как в его составе работали специалисты высочайшей квалификации, прекрасно представляющие цели и содержание исследований, способные оценить плюсы и минусы ЭВМ, создаваемых за рубежом, и использовать это для повышения качества своих разработок, то создаваемый наспех огромный коллектив НИЦЭВТ в первые годы существования, за редким исключением, был в значительной степени лишен этого. Попавшие в него немногие первоклассные специалисты, такие как Б.И. Рамеев, В.К. Левин, «погоды» не сделали, их было слишком мало. Не случайно они не прижились в коллективе, который вынужден был встать на путь аналогий, — копирования того, что появлялось за рубежом, причем с большим отставанием. НИЦЭВТ и был назначен головной организацией по разработке ЕС ЭВМ.

Сергей Алексеевич, узнав, что решение повторить систему IBM-360 принято окончательно, поехал на прием к министру. Для этого ему пришлось встать с постели. У него было воспаление легких, он лежал с высокой температурой. Министр не принял ученого — видимо, было стыдно смотреть ему в глаза, — переадресовал к заместителю. Визит закончился безрезультатно. После этого болезнь усилилась. Иногда возникала надежда на выздоровление, но ненадолго. Крепчайший

организм ученого, годами подтачиваемый напряженнейшим, не знающим меры трудом, не выдержал.

Ему становилось все хуже и хуже. Орден Ленина, которым он был награжден к 70-летию, ему вручили дома, — он уже почти не вставал с постели. Вряд ли его порадовала награда, если страдало дело, которому было отдано двадцать пять самых плодотворных лет…

3 июля 1974 г. Петр Петрович Головистиков, приехавший из Киева, посетил Сергея Алексеевича в больнице и рассказал, что побывал в Феофании, где когда-то создавалась МЭСМ. Лебедев внимательно слушал, но смотрел не на него, а куда-то вдаль. Петр Петрович запомнил этот взгляд на всю жизнь. Потом тяжелобольной ученый оживился — возможно, вспомнились до предела трудные, но такие памятные счастьем исполненного замысла годы, проведенные в Киеве. Этот день был последним в жизни великого Труженика, гениального Ученого, прекрасного Человека — Сергея Алексеевича Лебедева.

Для набиравшей силу командно-административной системы такие люди становились досадной помехой на пути бездумно принимаемых решений.

Прогноз С.А. Лебедева оправдался. И в США, и во всем мире в дальнейшем пошли по пути, который он предлагал: с одной стороны, создаются супер-ЭВМ, а с другой — целый ряд менее мощных, ориентированных на различные применения ЭВМ — персональных, специализированных и др.

На разработку ЕС ЭВМ были затрачены огромные средства. Копирование IBM-360 шло трудно, с многократными сдвигами намеченных сроков, потребовало огромных усилий разработчиков. Конечно, была и польза, — повторили пусть устаревшую, но все же весьма сложную систему, многому научились, пришлось овладеть новой технологией изготовления ЭВМ, разработать обширный комплекс периферийных устройств, появились навыки «советизации» зарубежных разработок. И все же при этом «варились в собственном котле», с трудом доставая документацию на систему IBM-360. Если подумать об ущербе, который был нанесен отечественной вычислительной технике, стране, общеевропейским интересам, то он, конечно несравненно выше в соотношении с полученными скромными (не по затратам труда и средств!) результатами,

Лидерам обновления нашего общества нельзя забывать о роли науки и значении выдающихся, воистину незаменимых ученых в развитии научно-технического прогресса и общества в целом.

Напомнить о бессмертном подвиге основоположника отечественной вычислительной техники, о славных годах создания первой ЭВМ на земле Украины, о делах ИТМ и ВТ РАН, носящего теперь имя С.А. Лебедева, одного из немногих научных коллективов, сумевших сохранить передовые позиции в электронном машиностроении и веру в собственные творческие возможности, воспринятую от учителя, — самое время!

Это и попытался сделать автор.


Главное дело жизни

Имя академика Виктора Михайловича Глушкова связано с кибернетикой, вычислительной техникой, математикой.



Несмотря на разнообразие научных направлений, интересовавших Глушкова, все они относились к одной глобальной проблеме компьютеризации и информатизации общества. В плане этой важнейшей проблемы он был, несомненно, самой яркой фигурой 60-70-х годов в бывшем Советском Союзе.

Деятельность Виктора Михайловича Глушкова воспринималась разными учеными и работавшими с ним людьми не однозначно, но все сходились в одном: это был исключительно талантливый человек, один из тех, кого можно причислить к выдающимся ученым современности. Такое впечатление создавалось сразу же, когда приходилось прослушать его доклад, лекцию или обсудить с ним какой-либо вопрос.

Заканчивая среднюю школу и овладев к этому времени основами высшей математики и квантовой механики, он мечтал стать физиком-теоретиком. Возможно, что начавшаяся война лишила науку второго Сахарова.

После, завершения математического курса университета, на что понадобился всего один год, у него возникло страстное увлечение самой абстрактной, самой трудной областью математики — топологической алгеброй. За три года непрерывного «мозгового штурма» он первым из математиков решил обобщенную пятую проблему Гильберта. Полученные фундаментальные результаты сразу же поставили молодого ученого в первые ряды математиков бывшего Советского Союза. И вдруг, после такого головокружительного успеха, снова резкий поворот — от самой абстрактной к весьма практической науке — кибернетике. На этот раз — на всю оставшуюся жизнь.

Научные труды В.М. Глушкова — это огромный банк знаний, оставленный в наследство нынешнему и будущему векам. Первые публикации ученого в области абстрактных разделов алгебры появились, когда ему было двадцать семь лет. Из 800 печатных работ, созданных в годы увлечения кибернетикой, более 500 написаны им собственноручно, остальные — с учениками и другими соавторами. Большинство из них относится к различным направлениям кибернетики, около 100 — к теории проектирования ЭВМ и вычислительной технике.

Кибернетика трактовалась Глушковым как наука об общих закономерностях, принципах и методах обработки информации и управления сложными системами; вычислительная техника (ЭВМ) — как основное техническое средство кибернетики. Это нашло отражение в материалах первой в мире «Энциклопедии кибернетики», подготовленной по инициативе В.М. Глушкова (он же был ответственным редактором) и изданной на украинском и русском языках.

В ней освещаются: теоретическая кибернетика (теория информации, теория автоматов, теория систем и др.); экономическая кибернетика (экономико-математические модели для систем управления предприятиями и отраслями промышленности, транспортом и т. п.); техническая кибернетика (автоматическое управление сложными техническими системами и комплексами, автоматизация научного эксперимента, оптимизация процессов управления и др.); теория ЭВМ (системные принципы построения и конструирования электронных вычислительных машин и их математическое обеспечение); биологическая кибернетика (модели мозга, органов человека, регулирующих систем живых организмов и др.); прикладная и вычислительная математика.

Появление этого капитального труда (1974 г.) совпало со взлетом популярности кибернетики во всем мире. В подготовке энциклопедии приняли участие более 100 ученых бывшего Советского Союза, в том числе более 50 ученых Института кибернетики АН Украины.

В 1978 году коллектив редакторов и ответственных за разделы энциклопедии был отмечен Государственной премией Украины (Н.М. Амосов, И.Н. Коваленко, В.М. Кунцевич, В.А. Ковалевский, А.И. Кухтенко, Б.Н. Пшеничный, ЗЛ. Рабинович, Е.Л. Ющенко).

Если в первые годы становления кибернетики ее знаменем был американский ученый Н. Винер, то в 60-70-е годы — годы расцвета кибернетики — ее лидером стал украинский ученый В.М. Глушков.

Его книги «Теория цифровых автоматов», «Теория самоусовершенствующихся систем», «Введение в кибернетику» и ряд других сыграли на новом этапе развития кибернетики огромную роль в деле утверждения новой науки. Деятельность Глушкова вышла далеко за пределы Украины. Вряд ли можно назвать большой промышленный город в бывшем Советском Союзе, где Глушков не побывал и не выступал по проблемам кибернетики и вычислительной техники. Активной пропаганде способствовал его талант оратора. Большую роль в становлении, развитии и пропаганде кибернетики сыграли журналы «Кибернетика» и «Управляющие системы и машины», где он был главным редактором.

Блестящие выступления на международных научных форумах (он владел немецким и английским языками), научные труды, опубликованные за рубежом, принесли ему мировую известность. Благодаря огромному авторитету он избирался председателем и членом программных комитетов ряда международных конгрессов и конференций, связанных с обработкой информации. Несколько таких конференций проводилось в Украине. В качестве приглашенного лектора посетил много стран. Был в Польше, Венгрии, обеих Германиях, Болгарии, Чехословакии, Румынии, Кубе, США, Англии, Франции, Мексике, Индии, Испании, Италии, Японии, Австралии, Канаде, Норвегии и Финляндии. Консультировал правительства ГДР и НРБ по вопросам использования вычислительной техники для решения задач организационного управления. Был почетным членом Польской академии наук, Болгарской академии наук, Академии наук ГДР, Германской академии естествоиспытателей Леопольдина. (Членами последней были Гете и Эйнштейн.)



Индия. В гостях у Рерихов


Не случайно при переиздании Британской, Американской и Большой советской энциклопедий для подготовки раздела «Кибернетика» издательства обратились к В.М. Глушкову.

Колоссальный, заложенный еще в детстве и юности и постоянно пополняемый запас знаний из многих областей науки, сконцентрированный в не знавшей предела и усталости памяти ученого, позволил ему видеть дальше и глубже многих, постоянно выдвигать все новые и новые идеи, обоснованно и четко ставить цели исследований. Главным делом, которому он отдал себя целиком, не жалея здоровья, тратя все свое время, щедро расходуя возможности своего таланта, как магнитом притягивавшего к нему людей, было создание научных и технических основ информационной индустрии, той самой, что сейчас успешно функционирует в ведущих странах Запада.

Эта проблема была поставлена им в начале 60-х годов, когда вычислительная техника и у нас и за рубежом еще находилась в «младенческом возрасте» и мало кто видел достаточно четко ее определяющую роль в жизни общества. Он же уже тогда сумел заглянуть в будущее и ясно представил огромные перспективы развития и применения вычислительной техники и кибернетики в человеческом обществе.

Понимая всю сложность и грандиозность задачи и особенности выполнения крупномасштабных работ в бывшем Советском Союзе, он предложил правительству страны в качестве первого шага создать Общегосударственную автоматизированную систему управления экономикой страны (ОГАС). При этом он рассчитывал на поддержку правительства, поскольку существовавшие в то время средства и методы управления экономикой начиная уже с 40-х годов не справлялись с быстро растущим и все усложняющимся народным хозяйством, из-за чего оно становилось все менее и менее эффективным.

В.М. Глушков понимал, что создание ОГАС потребует быстрого развития работ в области вычислительной техники, разработки научных методов управления экономикой, построения мощной, охватывающей всю страну сети вычислительных центров (около 200 региональных и более 10 тысяч локальных), а в перспективе — широкого применения ЭВМ на рабочих местах специалистов в науке, технике, управлении — на производствах, в отраслях и т. д. и т. п., что и было его дальней целью.

Замысел ученого получил одобрение А.Н. Косыгина, председателя Совета Министров СССР, и В.М. Глушков со свойственной ему энергией приступил к делу, которое впоследствии назвал главным в своей жизни.

Сейчас можно говорить, что его предложения были преждевременными, что вычислительная техника в то время еще не достигла нужного совершенства и общество не было готово к ее использованию. Но ведь ученый не скрывал огромных трудностей, могущих возникнуть на этом пути, и рассчитывал, что при надлежащей организации работ их можно преодолеть. По его подсчетам, на выполнение программы создания ОГАС требовалось три-четыре пятилетки и не менее 20 миллиардов рублей (по тем временам — сумма огромная!). Об этом он прямо сказал Косыгину, подчеркнув, что программа создания ОГАС много сложнее и труднее, чем программы космических и ядерных исследований вместе взятые, к тому же затрагивает политические и общественные стороны жизни общества. Он подсчитал, что при умелой организации работ уже через пять лет затраты на ОГАС станут окупаться, а после ее реализации возможности экономики и благосостояние населения по меньшей мере удвоятся. Было еще одно обязательное условие, которое он поставил: организация авторитетного, наделенного всеми полномочиями государственного органа управления ходом выполнения программы создания ОГАС — Государственного комитета по управлению программой (Госкому пра), наподобие тех комитетов, с помощью Которых осуществлялись космическая и ядерная программы. Завершение работ по ОГАС он относил на 90-е годы, т. е. на наше время, что дает возможность утверждать — при достаточной поддержке ОГАС могла бы действительно стать реальностью. Не надо думать, что свершившийся сейчас переход от планового хозяйства к рыночной экономике сделал бы ОГАС ненужной и неэффективной. Как раз наоборот, ее техническая база, накопленное программно-алгоритмическое обеспечение, банки данных, накопившие опыт кадры сослужили бы очень полезную службу народному хозяйству новых государств, возникших на месте Советского Союза.

Безусловно, Глушков понимал, что замысел создания ОГАС вряд ли получит активную поддержку со стороны партийной и государственной элиты, которую научное управление экономикой лишало ореола непогрешимых вершителей судеб народа и страны, и, тем более, со стороны всей бюрократической системы управления бывшего Советского Союза, основанной на административном произволе при принятии самых ответственных решений.

Это был вызов и Западу — там не могли не понимать, что ОГАС, возможно, явится тем главным звеном, ухватившись за которое, Советский Союз сможет поддержать хиреющую экономику, и, что еще хуже, — не дай Бог, создаст наиболее современную и эффективную экономику, базирующуюся на плановом ведении народного хозяйства. Отсюда и появившиеся в 70-х годах нападки на ученого в средствах массовой информации бывшего Советского Союза и западного мира, преследующие цель опорочить ученого в глазах советского руководства, поставить заслон на пути реализации его замысла, направленного, по сути дела, на коренное преобразование общества.

Но таким уж был этот человек. Всю свою сознательную жизнь, начиная со школьных лет, он ставил перед собой казалось бы, недостижимые цели и ценой огромного труда и творческого напряжения добивался исполнения своих намерений, поражая окружающих своеобразными «рекордами» — в научном творчестве, физической выносливости, организаторской деятельности. Лишь об этой стороне жизни ученого можно было бы написать целую книгу. Не случайно еще при жизни он стал почти легендарной личностью, а за рубежом его называли Богом советской кибернетики. Созданный в невиданно короткие сроки — всего за пять лет — Институт кибернетики АН Украины (это тоже один из его «рекордов»!), где работал многотысячный коллектив энтузиастов, в основном молодых ученых и инженеров, своими оригинальными исследованиями и выдающимися практическими результатами завоевал огромный авторитет и в 60-70-х годах стал «Меккой» кибернетиков всего мира.

Исследования, которые проводились в Институте кибернетики АН Украины (а до его образования — в ВЦ АН Украины), имели те направления, которые отвечали основной задаче, поставленной для себя Глушковым. Они включали компьютерную науку и технику; теорию и технические средства автоматизированных и автоматических систем; проблему искусственного интеллекта; методы оптимизации.

Естественно, он не мог и не ставил целью силами одного, хотя и очень крупного института, каким был Институт кибернетики АН Украины, решить все задачи, связанные с компьютеризацией и информатизацией огромной страны. Он пытался привлечь к проблеме создания ОГАС уже сложившиеся и достаточно мощные коллективы специалистов многих министерств, последовательно добивался правительственного постановления по этой проблеме с целью выделения соответствующих средств.

Институту кибернетики АН Украины отводилась роль лидера в области фундаментальных основ кибернетики и «возмутителя спокойствия» путем разработки на основе теоретических исследований новых технических средств, в первую очередь вычислительных машин, опережающих время, пионерских информационно-управляющих систем, оригинальных и эффективных методов оптимизации. Благодаря активной деятельности Глушкова пропаганда достижений института становилась действенным фактором ускорения развития и внедрения вычислительной техники и кибернетики в народное хозяйство, науку, технику и др., создавала благоприятную почву для развития работ по ОГАС.

Первые значительные успехи Института кибернетики АН Украины были связаны с созданием новых средств вычислительной техники.

Оригинальность (мировой либо отечественный приоритет) большинства идей и принципов, на базе которых создавались ЭВМ 60-70-х годов в Институте кибернетики АН Украины, их значительный вес в общем объеме вычислительной техники, выпускаемой в Советском Союзе в то время, свидетельствуют о значимости украинской научной школы в области цифровых вычислительных машин, идеологом которой стал В.М. Глушков.

Отечественная вычислительная техника тех лет, в том числе разработанная в Украине, не уступала мировому уровню. Когда в июле 1970 г. в Англии состоялся форум «Фундаментальная школа пионеров мировой компьютерной техники, которые творили ее прошлое и будут формировать будущее», то на него были приглашены докладчики всего из восьми стран, в том числе из Советского Союза, который достойно представляла Украина. Это подтверждает, что вклад Украины был действительно весомым.

Имя Глушкова в истории развития вычислительной техники связано прежде всего с разработкой теории проектирования ЭВМ, чем он стал заниматься с 1958 года, переключившись на кибернетику. Его с полным правом можно считать основателем этого стержневого направления науки о компьютерах. Следующей очень важной частью работ в этой области, выполненных им и под его руководством (в 50-е и 60-е годы), стали исследования в области управляющих машин и ЭВМ с высоким внутренним интеллектом. При этом преследовались две цели: во-первых, создание средств управления технологическими процессами, и, во-вторых, построение ЭВМ для инженерных расчетов — предвестников персональных ЭВМ, т. е. вычислительных средств для «низовой» компьютеризации на уровне производственных объектов и рабочих мест специалистов, работа которых связана с обработкой информации. Затем последовал переход к разработке структур, а также архитектур универсальных ЭВМ с высоким внутренним интеллектом. Институт кибернетики АН Украины по этим направлениям развития вычислительной техники в 50-х и 70-х годах был ведущей организацией в Советском Союзе, осуществляя исследования на мировом уровне. Завершающим этапом (конец 70-х-начало 80-х годов) явилась разработка принципов построения сверхпроизводительной многопроцессорной макроконвейерной ЭВМ с ненеймановской архитектурой и программного обеспечения, рассчитанного на использование в многопроцессорной системе. Только сейчас, десять лет спустя, подобные системы вышли на первый план в мировом компьютеростроении. Идея макроконвейера, выдвинутая В.М. Глушковым в конце 70-х годов, явилась прорывом в будущее вычислительной техники.

Большинство теоретических разработок, выполненных в Институте кибернетики АН Украины в области вычислительной техники, были реализованы «в металле», т. е. в реальных ЭВМ. В 60-70-е годы промышленность Советского Союза выпускала более пятнадцати типов ЭВМ, разработанных в Институте кибернетики АН Украины. Требование «промышленной» реализации научных идей было одним из главных у Глушкова. Этому способствовали и традиции, сложившиеся еще при С.А. Лебедеве.



В.М. Глушков, С.А. Лебедев, Э.К. Первышин (в центре) во время одной из международных конференций

«Научные труды В.М. Глушкова, научные и практические результаты его исследований будут долгое время влиять на развитие науки о компьютерах во всем мире», — так оценил деятельность Глушкова в области проектирования и создания ЭВМ австрийский ученый X. Земанек.

Международную известность получили работы В.М. Глушкова и ученых института в области искусственного интеллекта. Они велись параллельно разработке теории ЭВМ и служили источником для развития структур и архитектур вычислительных машин новых поколений. Помимо проблемы интеллектуализации ЭВМ Глушковым разработаны основы теории дискретных самоорганизующихся систем, рассмотрена проблема повышения интеллектуальных возможностей роботов, вопросы теории распознавания образов и др. Проблему искусственного интеллекта он считал одной из самых перспективных в кибернетике и уже задумывался о построении логико-математической модели разума, способного мыслить вне человеческой плоти, о духовном бессмертии гениальных людей.

Огромную роль В.М. Глушков сыграл в формировании идей и методологии построения автоматизированных систем управления различного назначения, от простых до самых сложных. В этой области, так же как и в вычислительной технике, перед учеными института ставилась задача получения не только фундаментальных, но и практических результатов, т. е. создание конкретных систем управления технологическими процессами, сложными научными и промышленными экспериментами, предприятиями и целыми отраслями промышленности.

Им написаны основополагающие монографии по принципам построения АСУ и ОГАС, такие как «Введение в АСУ» (1972 г.), «Основы безбумажной информатики» (1982 г.), «Макроэкономические модели и принципы построения ОГАС» (1975 г.) и целый ряд научных статей, опубликованных в различных периодических изданиях.

По инициативе Глушкова в институте начиная с 1960 г. проводились исследования в области экономической кибернетики. При его непосредственном участии и поддержке сформировались основные научные направления: сетевое планирование и управление, теория расписаний и календарное планирование, нелинейное и стохастическое программирование, дифференциальные игры, динамические модели экономики, методы дискретной оптимизации и пр., что привело к возникновению новой генерации талантливых исследователей, многие из которых в настоящее время являются специалистами, известными не только в нашей стране, но и за рубежом.

Результаты этих работ были положены в основу математического обеспечения многих пионерских автоматизированных и автоматических систем управления технологическими процессами, производствами, предприятиями и пр.

И все-таки, все, что делалось Институтом кибернетики АН Украины, было, пожалуй, верхушкой айсберга тех многочисленных работ, которые осуществлялись под руководством В.М. Глушкова за пределами института, в первую очередь в различных организациях многих союзных министерств, где он был научным руководителем ряда научных советов, председателем различных комиссий и, конечно, «нарушителем спокойствия» многих ответственных лиц, от которых зависело развитие вычислительной техники, работ по ОГАС и др.

Буквально титанические усилия, предпринимаемые Глушковым, постоянно наталкивались на стену равнодушия, непонимания, а то и просто вражды в верхних эшелонах командно-административной системы. Об этом свидетельствует жена ученого, которой он не раз, возвращаясь из Москвы, говорил, что его не понимают.

Это не было случайным, как и первоначальное непризнание кибернетики учеными-философами в бывшем Советском Союзе.

Как известно, кибернетика вместе с теорией сложных систем с первых шагов стала претендовать на научное, обоснование процессов управления не только в живых организмах и машинах, но и в обществе, и — о ужас! — не на основе марксизма-ленинизма, а на базе точных наук — математики, автоматического управления, статистики и пр.

Это вступало в противоречие с давно сложившимися «методами» управления. Кириленко, один из секретарей ЦК КПСС, как-то сказал Глушкову по поводу использования вычислительной техники для управления технологическими процессами: «А зачем это? Я приезжаю на завод, выступаю, и завод увеличивает производительность на пять процентов! Это не твои два!» А соратнику Глушкова А.И. Китову (по работам, проводимым в оборонной промышленности) один из работников аппарата ЦК КПСС заявил: «Методы оптимизации и автоматизированные системы управления не нужны, поскольку у партии есть свои методы управления: для этого она советуется с народом, например, созывает совещание стахановцев или колхозников-ударников». А.Н. Косыгин, Д.Ф. Устинов и ряд министров, поддерживавших В.М. Глушкова, были скорее исключением из правила.

И тем не менее Глушков не отступил. Начиная с 1962 года двадцать лет он целенаправленно и настойчиво продвигал идею информатизации ч компьютеризации страны и добился того, что основные принципы построения ОГАС были одобрены Советом Министров СССР. Оставался главный барьер — Политбюро ЦК КПСС. Именно оно должно было дать согласие на организацию Государственного комитета управления программой ОГАС. Но в этом ученому было отказано…

На заседании Политбюро, где рассматривался этот вопрос, Глушков произнес пророческие слова: «В конце 70-х годов все равно придется вернуться к ОГАС, иначе экономика развалится!».

Когда он вернулся в Киев, его вызвал первый секретарь ЦК КПУ Шелест и сказал, чтобы он перестал пропагандировать ОГАС в «верхах» и занялся «низом» — созданием автоматизированных систем на предприятиях.

Но Глушков еще задолго до этого указания подключил коллектив института к разработке сначала «Львовской системы» (АСУ на Львовском телевизионном заводе), а потом к «Кунцевской» — на радиозаводе в Кунцево под Москвой, которые, по его идее, должны были стать типовыми системами.

В это трудное время его поддержал Устинов, министр обороны. Он предложил ученому реализовать идею ОГАС (пусть частично) на примере оборонных отраслей промышленности. Высокая степень организации в этих отраслях помогла создать в короткие сроки целый ряд эффективных автоматизированных систем управления предприятиями.

Но не дремали и противники идей В.М.Глушкова. Автоматизированные системы управления были объявлены несостоятельными, приносящими одни убытки. В ряде случаев, когда они делались неумело, это действительно имело место. Эти факты преподносились как повсеместные. На этом строилась политика отрицания ускоренной компьютеризации и информатизации общества.

Как и в случае с кибернетикой, противникам АСУ удалось достигнуть временного успеха.

Глушков уже не. мог активно вмешаться в эту нечестную игру, хотя и пытался что-то сделать… Быстро прогрессирующая болезнь стала новым безжалостным противником.

Вряд ли стоит вспоминать его бывших оппонентов — они не заслужили этого. Что же касается В.М. Глушкова, то память о нем сохранится в сердцах людей, работавших с ним, и, надеюсь, не оставит равнодушными тех, кто прочитает эту книгу.

За те двадцать лет, что В.М. Глушков боролся за свои. идеи, и те десять, что прошли без него, в странах Запада появилось многое из того, о чем мечтал ученый. Там хорошо поняли (может, и не без влияния Глушкова, к которому прислушивались и о ком даже дважды докладывали президенту США), что принятие эффективных управленческих решений невозможно без анализа всей информации о событиях и факторах, способных повлиять на окончательный результат, и для этой цели создали телекоммуникационную сеть, включающую как мощные, так и персональные компьютеры, позволяющую удовлетворить практически любые запросы любого клиента от домохозяйки до бизнесмена и менеджера самого высокого уровня.

Такая информационная система позволяет пользователям обмениваться всеми видами сообщений — от текстовых и цифровых до голосовых и видео. Ответ часто можно получить в ту же минуту. Можно, не подымаясь со стула, совершать сделки, рыться в библиотеке Конгресса США, консультироваться с врачем или юристом, получать исчерпывающую информацию о ценах и спросе на любые товары, заказывать место в гостинице, управлять предприятием, фирмой и так далее.

Система содержит постоянно подновляемые банки данных по самым различным проблемам (медицина, финансы, коммерческая информация и т. д. и т. п.), доступные (за плату) любому пользователю. Могут создаваться банки данных закрытого типа для ограниченного круга лиц. Если внимательно ознакомиться с трудами В.М.Глушкова, можно убедиться, что созданная на Западе информационная система в идеологическом плане мало чем отличается от того, что предлагал ученый.

Она создавалась без всяких решений «вышестоящих органов», а просто в силу экономической целесообразности. Огромную роль сыграло появление в 70-х годах персональных ЭВМ, получивших широчайшее распространение в офисах, на рабочих местах инженеров, конструкторов, менеджеров. Вначале обмен информацией между пользователями машин шел путем простого обмена дискетами, на которых записывалась нужная информация. Затем появились локальные сети, охватывающие персональные ЭВМ целой фирмы, предприятия, учреждения. Параллельно этому процессу шло создание банков данных в мощных вычислительных центрах. Постепенно к ним стали подключаться локальные сети. Образовавшиеся региональные центры были объединены между собой через спутниковую связь. Так появилась мощная информационная сеть, охватывающая ведущие страны Запада.

Придет время — а оно обязательно придет — и такая же информационная сеть заработает и в странах СНГ. Большой задел для ее организации был создан еще и при В.М. Глушкове.

Завершить главное дело его жизни — вопрос чести ученых, инженеров, руководителей.

Во время случайной встречи с киевским журналистом В.П. Красниковым я поделился своим намерением написать воспоминания о становлении и развитии отечественной вычислительной техники и узнал, что у него есть магнитофонные записи рассказов Виктора Михайловича Глушкова о детстве, юности и первых годах научной деятельности. Оказалось, что журналист многократно встречался с ученым в начале 70-х годов, намеревался писать повесть о его жизни, но внезапно заболел. Когда же выздоровел, то понял, что «вышел из образа». Записи остались неиспользованными. Он передал их мне. Это явилось первым побудительным моментом собрать материалы об ученом.

В свою очередь Валентина Михайловна Глушкова, жена Виктора Михайловича, познакомила меня с семейной реликвией — магнитофонными записями рассказов В.М.Глушкова, продиктованных дочери Ольге в последние дни жизни, — своеобразной исповедью, в которой он подводит итог своей творческой деятельности. Полученные материалы и позволили подготовить эту главу. Она состоит из автобиографии, составленной по рассказам В.М. Глушкова В.П. Красникову в 1974 году, и текстов, записанных дочерью 3-11 января 1982 года, когда ученый находился в тяжелейшем состоянии в реанимационной палате Кремлевской больницы в Москве.

Рассказы Глушкова дополняются воспоминаниями сокурсников в студенческие годы, рассказами ближайших учеников и соратников по работе в Институте кибернетики АН Украины, отрывками из писем друзей — выдающихся ученых того времени, а также воспоминаниями жены.

Московские ученые и друзья В.М. Глушкова (А.И. Китов, Ю.А. Антипов, И.А. Данильченко, Ю.А. Михеев, Р.А. Михеева) также откликнулись на просьбу рассказать о тех работах, которые Глушков проводил вне пределов Украины. Без упоминания об этой стороне деятельности ученого образ его был бы далеко не полным.

В процессе подготовки рукописи со мной делились воспоминаниями ветераны Института кибернетики им. В.М. Глушкова АН Украины B.C. Михалевич, В.И. Скурихин, А.А. Морозов, Ю.В. Капитонова, А.А. Летичевский, А.А. Сто-гний, Т.П. Марьянович и др… Их фамилии многократно упоминаются Глушко-вым. Поэтому я счел возможным включить в текст краткие комментарии о работах этих ученых, тем более, что они позволят tлучше представить замечательный коллектив Института кибернетики АН Украины, вполне достойный своего директора.

А.А. Стогний и С.С. Азаров помогли мне уточнить современные представления об информатизированном обществе, что было необходимо для написания этого раздела.

Тексты автобиографии и «исповеди» В.М. Глушкова набраны крупным шрифтом. Все остальное — петитом (за исключением первого и последнего разделов).

Сотрудники библиотеки института (Т.И. Подколзина), фотолаборатории (Н.А. Самофалова), комнаты-музея В.М. Глушкова (Л.Д. Заика) помогли в подготовке фотодокументов и архивных материалов.

Очень большую практическую пбмощь в компоновке и корректировке материала оказала Ю.В. Капитонова, ставшая руководителем бывшего отдела Глушкова.

Выражаю всем глубокую благодарность и надеюсь, что наш общий труд поможет сохранить память о человеке, который во многом определил ход развития кибернетики и вычислительной техники в Украине и в бывшем Советском Союзе.


Счастье творчества

«Талант и счастливый случай могут служить лишь продольными брусьями лестницы, по которой человек поднимается вверх, но поперечные перекладины, образующие собой ступени, должны быть, во всяком случае, сделаны из устойчивого прочного материала. Терпеливое и постоянное напряжение энергии одно только и может служить таким материалом. Никогда не хвататься всего одной рукой за то, чему можно отдаться всем своим существом, и никогда не относиться с кондачка к делу, за которое берешься, каким-бы ничтожным оно само по себе не представлялось».

Ч. Диккенс, «Давид Копперфильд»
Первые шаги к науке

Родился я 24 августа 1923 года в Ростове-на-Дону в семье горного инженера Михаила Ивановича Глушкова. Отец родом из станицы Луганской, расположенной на границе между Украиной и Россией, мать, Вера Иосифовна Босова, — из станицы Каменской. Отец закончил Днепропетровский горный институт, мать работала в сберкассе.

Ростова почти не помню. Сохранилось в памяти, что уходили за Дон ловить то ли лягушек, то ли рыб.

В 1927–1928 году мы переехали на шахту им. Артема около города Шахты, она была самой большой в Донбассе и одной из самых глубоких. После «шахтинского» дела все инженеры были арестованы. Отец и еще один специалист вначале выполняли работу за десятерых. Потом постепенно обросли помощниками.

В 1929 году, когда на шахте положение выправилось, отца перевели на работу в трест в город Шахты, и я стал жить в этом городе.

Читать научился очень рано. Моя бабушка по отцу, Ефимия Петровна, когда ждала рождения внука, научилась грамоте и читала мне книжки. Отец рисовал для меня картинки со стихами. По-видимому, тогда я и научился читать.

Перед школой я уже прочитал Уэллса, Жюля Верна и другую научно-фантастическую литературу, но все-таки ярко выраженных наклонностей в тот период у меня не было.

В 1931 году, когда мне исполнилось восемь лет, я поступил в школу. Учеба давалась мне без большого труда, так как еще с первого класса я привык прочитывать учебники заранее. Поэтому после занятий в школе мог заниматься своими делами. В третьем классе увлекся зоологией. Прочитал книгу Брэма о животных, стал изучать их классификацию. В четвертом классе меня заинтересовали минералогия и геология. Отчасти этому способствовал отец, который хорошо знал геологию. До моего рождения он был начальником горного округа и открыл на Кавказе свинцовые и цинковые месторождения. Я начал штудировать книги из библиотеки отца и собирать коллекцию минералов. Естественно, что в наших краях большую коллекцию собрать было трудно, но она очень пополнилась после поездки на Кавказ с родителями. Мы были в Орджоникидзе, Сочи и Анапе. В годы войны она, к сожалению, пропала.



Михаил Иванович Глушков

Отец был страстным радиолюбителем и приобщил меня к этому делу. Когда мы жили на шахте им. Артема, он все время мастерил радиоприемники и аккумуляторы. Я смотрел, как отец паяет, слушал радиопередачи и уже летом между четвертым и пятым классами начал сам делать радиоприемники. Причем меня уже не удовлетворяло слепое повторение известных схем, я начал изучать книги сначала для радиолюбителей, потом по радиотехнике. И когда пошел в пятый класс, то уже стал делать радиоприемники по собственным схемам. Следует сказать, что в этом большую роль сыграли научно-популярные журналы, такие как «Техника молодежи», «Знание и сила», которые в то время были очень интересными. Не помню, в каком из них увидел конструкцию электропушки с тремя соленоидами и лепестками-держателями, между которыми зажимался стальной сердечник — снаряд. При включении пушки снаряд пролетал первый соленоид и размыкал контакты, через которые подавался электрический ток. Затем он влетал в следующий соленоид и т. д. Я сделал пушку точно по описанию, и она работала, но плохо, потому что механические контакты зажимали снаряд сильнее нормы. И тогда мне удалось сделать первое изобретение — систему управления полетом снаряда, и моя пушка заработала лучше, чем описанная в журнале. Это окрылило и подтолкнуло к мысли сделать прицельное устройство для определения угла поднятия ствола пушки.

Для устройства прицеливания понадобился расчет кулачково-эксцен-трикового механизма. Я понял, что нужны математические знания. Математика необходима была и при решении другой проблемы — точного расчета силы тяги и динамики полета снаряда. Эти задачи решаются методами дифференциального и интегрального исчисления, требуют очень тонкого понимания физики твердого тела, магнетизма. Это были первые задачи, которые я сам себе поставил. Тогда я учился в пятом классе. С тех пор я приучил себя не просто перелистывать книгу и извлекать знания неизвестно для чего, а обязательно под определенную задачу. Трудная задача требует, как правило, самых разнообразных знаний. В чем преимущество такого метода усвоения знаний? Когда вы просто читаете книгу, то вам кажется, что все поняли.



Вера Иосифовна Глушкова

А на самом деле в памяти почти ничего не отложилось. Когда читаешь под углом зрения, как это можно применить к своим задачам, тогда прочитанное запоминается на всю жизнь Такому способу обучения я следовал всегда.

Когда я понял, что моих математических знаний не хватает, то раздобыл учебник по дифференциальному исчислению и «Аналитическую геометрию» Привалова и составил план занятий на лето (перед шестым классом). Стал заниматься алгеброй, геометрией, тригонометрией по программам до десятого класса включительно. В шестом классе изучил дифференциальное исчисление и уже мог составлять уравнения кривых, дифференцировать функции и пр. Летом между шестым и седьмым классами занимался математикой по университетской программе. Учась в седьмом классе и все лето до начала восьмого, решил (я не знаю математика, который бы это сделал) все примеры из задачника Гюнтера и Кузьмина, рассчитанного на студентов университетов, с очень трудными задачами. Мне хотелось, чтобы не оставалось ничего непонятного. Начал изучать сферическую тригонометрию и открыл для себя небесную механику. Отец и мать страшно возмущались этими занятиями — боялись за мое здоровье. Поэтому я многое делал украдкой.

Это не единственное, чем я занимался. Хорошо помню, что еще в пятом классе мы с отцом сделали примитивный телевизор и принимали передачи из Киева, где была единственная в Советском Союзе телестудия, но это было не нынешнее телевидение, хотя в то время было очень интересно видеть хоть какое-то изображение.

Кстати, моим первым увлечением была не зоология, а астрономия, хобби моего отца. В первом и во втором классах я уже знал названия планет, комет и многое другое. С помощью самодельного телескопа примерно с 40-кратным увеличением мы вместе наблюдали за Луной и звездами. Но этим предметом я не увлекся — мешало плохое зрение. В третьем и четвертом классах заинтересовался гипнозом. Кое-что даже получалось. В книжке по гипнотизму, автора которой я не помню, была глава «Память и уход за ней», откуда я почерпнул разные упражнения для развития памяти. Так что и это кратковременное увлечение не прошло без следа.

В восьмом классе мне попалось описание управляемой по радио модели корабля, и я попытался ее сделать. Но построить хорошую модель не удалось. Пруд в городе был в семи километрах от нашего дома, а модель получилась довольно тяжелой, таскать ее туда и обратно было трудно. Поэтому я сделал нечто вроде трамвая, но без рельсов, а также коротковолновый передатчик и приемник для передачи-приема команд и мотор к трамваю. Мой трамвай мог двигаться, останавливаться, поворачиваться.

С точки зрения технической эстетики я никогда большим мастером не был и не считал особенно нужным сделать модель, похожую на автомобиль, танк или еще на что-нибудь Меня интересовала суть дела. Смастерил я также прожектор и домашний телефон. (По настоящему телефону позвонил впервые, будучи студентом.) Самоделками, число которых трудно определить, я заинтересовал соучеников, и они часто «паслись» у меня дома. Так, к фотоаппарату «Фотокор» увеличитель сделал сам. Потом вместе с отцом мы соорудили камеру для дневного проявления с рукавами, красным стеклом, кюветками и всем прочим.

С детства у меня была сильная близорукость, но в школе я очков не носил, потому что был довольно подвижным ребенком. Поскольку физически я был развит довольно слабо, то начал активно заниматься физкультурой. К десятому классу у меня были очень хорошие результаты. Например, я почти на свой рост прыгал в высоту, научился плавать. Причем вначале чуть не утонул из-за близорукости — не разглядел и бултыхнулся туда, где глубоко, ну и пошел на дно. Меня вытащили и откачали.

Это мне не понравилось, и я решил научиться плавать. Отец несколько раз пытался научить, но у меня ничего не получалось. Вообще по натуре я заочник и не люблю, когда кто-то помогает. Что же я сделал? Вспомнив закон Архимеда, я понял, почему у меня не получается: голову держу высоко. Как только я погрузился настолько, что выглядывал лишь нос, то сразу поплыл. И переплыл довольно глубокий канал. Кстати, своим девчонкам я передал этот опыт и не без пользы. Пытался заниматься боксом, но не получилось: удары освоил, но защита страдала — подводило зрение. Я понял, что тут ничего не поделаешь, и бросил. Немного занимался футболом и волейболом, но также мешало зрение (в очках я никогда не играл). Люблю прыжки в воду, прыгал с десяти- и восьмиметровой вышки. Собственно спортом я занимался лишь для своего физического развития и к десятому классу в этом преуспел.

Поскольку я считал себя очень неорганизованным человеком, и это меня волновало, я специально включал в расписание занятий не только то, что нравилось, но и нелюбимые дисциплины, — например, французский язык, черчение и рисование.

В восьмом классе у меня возник интерес к философии. Первая книжка, которую я прочел, «Материализм и эмпириокритицизм». Естественно, читать ее было довольно трудно в том возрасте. Но я не успокаивался до тех пор, пока не начинал ясно понимать каждый термин. Перед десятым классом я прочел «Историю философии» и «Натурфилософию» Гегеля. (У нас, по-моему, не все специалисты философы его читали.) С тех пор я не брался за Гегеля, даже когда сдавал в институте диамат, поскольку все помнил.

К тому времени у меня выработалась довольно большая скорость чтения. Помню, за вечер я прочитывал два романа Тургенева. Правда, это имело и свои отрицательные стороны, — художественные произведения следует читать медленно, однако это я понял спустя некоторое время.

До восьмого класса литература была отнюдь не любимым предметом, но затем я увлекся не только прозой, но и поэзией. И к десятому классу знал очень много стихотворений. Однажды выиграл спор (уже после десятого класса), что смогу десять часов непрерывно декламировать стихи. Я знал наизусть всю поэму Маяковского «Ленин», «Фауста» Гете. Фауст мне нравился необычайно, потому что в его образе раскрывается романтика познания, что для меня тогда было самым главным. Много знал стихотворений на немецком языке, в основном Гете, Шиллера, Гейне, кроме того любил Брюсова и Некрасова. В школе никто из соучеников не догадывался о моем увлечении поэзией. Даже девушкам я стеснялся читать стихи. Все у меня было только для себя. В пятом классе у меня были ужасные и голос, и слух. Но я, между прочим, слух воспитал. Люблю петь песни, особенно украинские. У меня бабушка пела украинские пени и говорила наполовину по-украински.

У меня было какое-то образное мышление, геометрическое, что-ли. Вот читаю, что д Артаньян вышел с такой-то площади и повернул на такую-то улицу, и навсегда запоминаю, что с этой площади начинается эта улица. А после у меня всегда возникало желание посмотреть, как это на самом деле. Я находил в энциклопедии или в атласе карты городов и проверял свои представления. Снова-таки, если вы будете просто смотреть на план города, вы его не запомните, но поскольку я прослеживал маршруты литературных героев, то планы городов сразу запечатлевал в памяти. В 1966-м или 1967 году, попав в Мадрид, я легко ориентировался в нем. Это же могу сказать и о Париже, Лондоне, Берлине и Риме.

Увлечение поэзией не мешало занятиям математикой. К началу восьмого класса я овладел основными университетскими курсами. Однако остались пробелы — теория Галуа, которую я к этому времени не изучил, и др. Вследствие целенаправленного подхода у меня были пробелы даже в школьном курсе. Помню, что начала стереометрии я не знал, поскольку она мне была не нужна.

Меня все время преследовала задача точного расчета электропушки. Уже многое было сделано. Но теория втягивания металлического снаряда в соленоид так и не получалась. Я стал изучать физику. Достал старый пятитомный курс физики Хвольсона дореволюционного издания и проштудировал его, так как понимал, что эту задачу без серьезного знания физики не решить. И к концу десятого класса теоретическая физика стала для меня основным увлечением.

На чем было основано оно и почему возникло? Я много занимался математикой, но бессистемно, по книгам, которые случайно попадали под руку, стремясь решить свои задачи. С теоретической физикой получилось несколько иначе. Будучи с родителями в Ростове-на-Дону, я купил там книгу Вандер-Вардена «Метод теории групп квантовой механики». Прочитав ее, я сразу понял, что с. помощью уравнения Шредингера (из квантовой механики) можно, в принципе, открывать свойства разных новых веществ на кончике пера. Как это понимать? Еще нет вещества, но вы написали его формулу. Какими оно будет обладать свойствами? Каковы будут его удельный вес, прозрачность, температура плавления и другие физические свойства? Этого и сейчас мы еще не умеем делать. Но в принципе с помощью квантовой механики такие задачи можно решить. Поняв это, я загорелся голубой мечтой работать в столь интересной области. Сейчас это направление получило название квантовой химии. Кстати, химией я также занимался довольно много. Дома была химическая лаборатория. Я даже пострадал от любви к химическим опытам. Один раз отравился хлором, другой — сулемой, оба — без потери сознания. Но еще тогда я понял, что надо сосредотачиваться на чем-то одном, и выбрал теоретическую физику, а точнее — квантовую химию. И если бы не война, это желание, может, и осуществилось бы.

21 июня у нас был выпускной вечер. Гуляли всю ночь. Придя домой, я включил приемник. Было 8 часов утра. Попал на немецкую радиостанцию. Передавали, по-моему, речь Гитлера. Я немецкий понимал. Так я раньше других узнал, что началась война.

Тяжелое время

Война нарушила и мои планы. Вместо Московского университета, куда я собирался поступать на физический факультет вместе с четырьмя школьными, товарищами, я подал заявление в артучилище. Однако меня не взяли, и военкомат выдал справку, что я негоден к службе в армии, но могу привлекаться к физическому труду. Я поступил в Ростовский университет. Уже 29 сентября первокурсников мобилизовали на рытье окопов на Таганрогском направлении, а студентов старших курсов эвакуировали в Ташкент.

Рыли окопы и противотанковые рвы до подхода немецких войск. Затем окопы заняли курсанты ростовских военных училищ, а нас распустили по домам. Я поехал в Шахты. Вероятно, это был последний поезд из Ростова.

В Шахтах меня снова отправили на рытье окопов. Весной, когда отпустили домой, я поступил на работу в шахтинскую детскую библиотеку. Ростов был уже освобожден, но университет не работал. Однако в начале лета 1942 года немецкие войска прорвали фронт под Воронежем. Наши войска стали отступать, возникла угроза сдачи Шахт и Ростова.

Отец эвакуировался вместе с коллективом горного техникума. Мы с матерью поехали на север, намереваясь пробраться к Сталинграду. На одном из железнодорожных переходов попали под сильную бомбежку. Небольшой группой добрались до переправы на Северском Донце. День и ночь ее бомбили немецкие бомбардировщики Ю-87. Один из них преследовал красноармейца, выбежавшего в поле. Семь-восемь раз самолет пикировал на солдата, обстреливая его из пулемета. Тот падал, вскакивал, пытаясь убежать, но бомбардировщик, сделав круг, возвращался, и все повторялось вновь.

Переправа была все время занята, а на второй день на том берегу, куда мы хотели попасть, показались немецкие танки. Мы возвратились в Шахты и укрылись у знакомых на окраине города, уже занятого немцами. Жили в подвале. Было начало августа. Время от времени приходилось ходить на старую квартиру за вещами, которые мы обменивали на продукты. 13 октября мать пошла одна и не вернулась. Я пытался искать ее в пересыльных лагерях, обошел шесть-семь лагерей под Ростовом и Новочеркасском. Прячась в развалинах, наблюдал как перегоняли из лагеря в лагерь арестованных и пленных, надеясь, что увижу мать, но все безрезультатно. Судьба ее выяснилась после войны. Она была депутатом Шахтинского горсовета. Ее выдала управдом, немка по происхождению. Маму, по-видимому, расстреляли на шахте имени Красина, где проходили массовые казни. За несколько месяцев, что фашисты находились в Шахтах, они расстреляли более трех с половиной тысяч человек.

После возвращения в Шахты договорился со своим однокашником Игорем идти к знакомым в Персияновку, что под Новочеркасском. Там был сельскохозяйственный институт с опытным хозяйством, работу которого немцы возобновили. Знакомые Игоря спрятали нас в складе, где хранились старые трактора, сеялки и другие машины. Здание находилось в стороне от института, но неподалеку был немецкий аэродром. Поэтому выходили из укрытия только ночью. Два месяца питались чем попало. Собирали мороженую картошку на неубранных полях, вырубали куски замерзшего мяса из найденной в поле павшей лошади. Запомнился как праздничный день, когда кто-то из студентов института принес комок гречневой каши… Во время ночных походов за картошкой разбрасывали на дорогах куски колючей проволоки. Один раз чуть не попались. Наступало уже утро, а мы не успели далеко уйти от места, где разбросали проволоку, когда на нее напоролась машина с немецкими солдатами. Нас увидели и обстреляли, но мы благополучно убежали. Если бы я не окреп физически в последние годы учебы в школе, то не выдержал бы. За эти три месяца получил болезнь печени.

14 февраля 1943 года Шахты освободили. Меня вызвали повесткой в военкомат и мобилизовали на восстановление шахт Донбасса. Большинство из них были взорваны и залиты водой. Полмесяца я работал в забое чернорабочим, потом меня перевели на инженерную должность — инспектором по качеству и технике безопасности. Во время пересменок я должен был опускаться в шахту и брать общую и по слоям пробы пластов из лав. Общий вес проб составлял несколько сот килограммов. Уголь, который я отбивал обушком, насыпался в мешки, а затем я тащил его на санках к выходу. На нашей шахте высота пластов была 50–80 сантиметров. Передвигаться и работать было очень трудно. Работали в основном солдаты из штрафных батальонов.

Пробы сдавали в лабораторию, где определяли качество угля и направление дальнейших разработок. Когда уголь грузили в вагоны, то перед их пломбированием я брал пробу на соответствие углю, что был в лаве. До войны работа, которую я делал, выполнялась бригадой из шести-семи человек. И только потом мне дали лаборантку для измельчения проб.

Обвалы случались часто, дважды попадал в них и я. Первый раз началось с того, что захрустели стойки и меня ударила по плечу глыба угля. Проход за мной завалило. Но путь к выходу остался открытым. Я выбрался, захватив пробы и кирку. Отделался ушибом плеча. Во второй раз я был в штреке главной шахты, километрах в двух от входа. Кстати, тогда не велось никакого учета тех, кто спускался в шахту. Когда набирал пробу в мешок, услышал взрыв и грохот, но не обратил на это внимания. Вынес мешки с пробой на вагонетку и потащил ее к выходу; на полпути наткнулся на завал. На мои крики никто не отвечал. Просидел в завале часов восемь. Потом услышал доносившийся шум, и вскоре меня освободили из заточения.

В конце ноября 1943 года Новочеркасский индустриальный институт объявил прием студентов на теплотехнический факультет. Но мобилизованных учиться не отпускали. Лишь в декабре мне выдали паспорт в военкомате. Вначале я решил поехать в Москву. Однако, приехав туда, понял, что это безнадежное дело — приезжих в университет не брали. Пришлось возвратиться.

Лето прожил у отца. Он работал в том же техникуме, где преподавал до войны. Все домашнее имущество погибло. Было тяжело с питанием. На шахте с продуктами было лучше. Я решил уехать в Новочеркасск и осенью 1944 года стал студентом Индустриального института.

Штурмуют не только крепости, но и теоремы

Зима была очень трудной. Жил на частной квартире, питался впроголодь. Занятия шли в аудиториях, в которых не успели вставить окна. Перебивался случайными заработками — репетиторством, разгрузкой вагонов на станции и пр. С наступлением лета устроился на работу. Наша бригада из семи человек за летние месяцы восстановила отопление в основных зданиях института, отремонтировала отопительные котлы. На следующий год я переквалифицировался в ремонтника электротехнического оборудования. За эти два года приобрел специальности слесаря-водопроводчика и техника-электрика.

В первые годы учебы я стал известен как студент, знающий досконально все области математики, а также основные сочинения Гегеля и Ленина.

Учившийся вместе с В.М.Глушковым в Новочеркасском индустриальном институте Г.Н. Мокренко вспоминает:

«В бытность учебы в институте зимой 1943–1944 годов я жил в одной комнате с Виктором Глушковым, Иваном Дупляниным и Михаилом Мезенцевым.

Окна нашей комнаты выходили на дорогу, и в период боевых действий 1942 года в доме были оборудованы огневые точки. Окна были заложены кирпичом, остались лишь небольшие амбразуры. Электрического освещения, естественно, не было, отопления также. Амбразуры мы заделали, поставили в комнате чугунную печь, а трубу вывели в окно. Тепло было лишь тогда, когда топили. Для освещения использовали коптилку из гильзы от ПТР. Несмотря на голодное и холодное время, мы не унывали, жили коммуной. И вот здесь особенно проявились замечательные черты Виктора. Он был очень компанейским, располагающим к себе знаниями, эрудицией, простотой, а главное — титанической работоспособностью. Все вечера, а зачастую и ночи он просиживал над учебниками, особенно математическими, исписывая множество тетрадей всевозможными вычислениями и выкладками. Бывало, заглянешь в его книгу, а там — сплошные интегралы, дифференциалы, в тетрадях — то же самое. Для нас это было непостижимо и труднопонимаемо. Но при всей своей исключительно высокой теоретической подготовке буквально по всем дисциплинам он этим не кичился и очень много занимался».

Другой сокурсник Глушкова, В.Г.Ушаков, в настоящее время заведующий кафедрой теоретических основ теплотехники Новочеркасского политехнического института, кандидат технических наук, также тепло вспоминает: «Сблизились мы как-то сразу. Весьма вероятно, это произошло потому, что был я в полном смысле юн и неопытен, а в Викторе непроизвольно ощущал какую-то внутреннюю силу, сдержанную мощь и знание жизни. Но знание не в смысле житейского меркантильного опыта, а в области духовной.

Учился он прекрасно. В его зачетной книжке были одни пятерки. Занимался регулярно и исступленно, изучая не столько теплотехнику (это был наш основной предмет), сколько науки физико-математического цикла.

Когда нам поручили в качестве курсового проекта разработать стенд для исследования процессов горения твердого топлива, предпочтение отдали его решению и не только отдали, но и реализовали, построив весьма солидную (высотой метров 12) натурную установку. Пожалуй, это было первое внедрение научных идей будущего академика.

Эрудиция Виктора была среди нас общепризнана. Ну, взять хотя бы такой факт. В 1944 году он как-то сказал мне: „Вот если сейчас сбросить на Берлин урановый шар диаметром шесть метров, то война тут же бы закончилась!“. Теперь-то ясно, что речь шла об атомной бомбе и о ее критической массе, но ведь это было в 1944 году. Значит, еще школьником Виктор был знаком с новейшими проблемами физики!

За отличные успехи в учебе и общественной работе его (как и меня) представили к Сталинской стипендии, но наши кандидатуры отклонили, так как перед поступлением в институт мы оба прожили несколько месяцев на оккупированной территории».

Учась на третьем курсе, я познакомился со своей будущей женой, Валентиной Михайловной Папковой, студенткой энергетического факультета.

На четвертом году обучения, когда пошли курсы по специальности, я понял, что теплотехнический профиль будущей работы не удовлетворит меня, и решил перевестись в Ростовский университет, где в начале войны проучился лишь месяц. Подготовившись за четыре курса по математике и физике, поехал в Ростов.

В первый приезд пришлось сдать 25 или 26 экзаменов, точно не помню. (Общее их число за четыре года обучения было 44 или 45). Я их сдал за два приезда. Помню, что в первый день сдал шесть экзаменов. Три из них одному доценту, даже помню его фамилию — Гремятинский. Очень строгий экзаменатор, гроза всех студентов. Он задал мне три вопроса. Из каждого курса математического анализа, изучаемого на первых трех курсах, по одному, предупредив, что в случае, если не справлюсь с заданием по первому, нечего говорить об остальных. Я быстро сделал первое задание, причем оригинальным способом, которого он не знал. Он дал мне новые задачи и в конце-концов поставил три пятерки.

Преподаватель физики, которому я должен был сдавать следующие два экзамена, к этому времени ушел домой. Я решил проявить нахальство и пошел к нему. Он удивился, но тем не менее принял у меня два экзамена по физике. Последним в этот день был экзамен по астрономии. Уже к вечеру я разыскал преподавателя в институте. Начав сдавать экзамен, заметил его легкое волнение, оказывается, у него очередь подходит за хлебом. Что делать? Пошли с ним вместе. Помню, стояли в очереди, у меня были бумаги, где я сделал все выкладки, и на все вопросы написал ответы. Он задал еще два или три вопроса и, уже поздно вечером получив хлеб, поставил мне последнюю оценку — «пятерку». Пожевав завалявшиеся сухари, я пошел к развалинам драматического театра, где и заснул. Проснулся, когда рассветало. В этот день сдал успешно два экзамена по алгебре, а на следующий — еще четыре.



Виктор и Валентина (конец 40-х гг.)

В следующий приезд сдал остальные экзамены и оказался на пятом курсе. Это был самый героический период в моей жизни.

Передо мной встал выбор — что делать? Было начало сентября 1947 года. Я числился студентом пятого курса Новочеркасского индустриального института и был зачислен на пятый курс Ростовского (на Дону) университета. В Новочеркасском индустриальном институте оставалось пройти производственную практику и написать дипломный проект. Я не стал этого делать и поехал в Ростов, начал заниматься в университете. Устроиться в общежитии не смог, частная квартира стоила дорого, поэтому я уехал домой в Шахты, договорившись, что буду учиться как заочник. Дипломную работу мне дали по теории несобственных интегралов. Отец в это время жил в Шахтах, второй раз женился, появились дети, и стало тесно. Я кое-как перебивался. В Ростове не показывался до самого момента защиты. В дипломной работе я развил новый метод вычисления таблиц несобственных интегралов. Рассмотрел все существующие таблицы и почти во всех интегралах, которые там есть, обнаружил неточности. Это были старые немецкие таблицы, выдержавшие 10–12 изданий. По всем имеющимся интегралам границы, в которых они справедливы, были указаны неправильно. Я это доказал. Работа была неплохая, как я теперь понимаю, но возникла непредвиденная ситуация. Со мной одновременно защищал диплом студент, который учился на стационаре и считался вундеркиндом, был любимцем большинства профессоров. А в аспирантуру в этот год не было приема, было лишь место ассистента. Профессура хотела этого студента оставить ассистентом с тем, чтобы позднее он поступил в аспирантуру. К тому же во время защиты дипломной работы я довольно резко ответил на замечание председателя экзаменационной комиссии, и мне поставили четыре, а студент-вундеркинд получил высший балл. И хотя у него оценки по ряду дисциплин были ниже, оставили его, а не меня.

При распределении на работу меня направили на Урал в одно из учреждений, связанных с зарождавшейся атомной промышленностью.

Вместе с В.М.Глушковым поехала его жена, Валентина Михайловна Папкова, с которой он расписался за месяц до окончания университета.

«Мы учились на одном факультете, но в разных группах, — вспоминает Валентина Михайловна. — Меня ошеломила первая встреча с ним. Его ум, колоссальный запас знаний во всех областях, каких бы мы не коснулись, заставили почувствовать себя такой беспомощной, уязвимой, хотя вел он себя естественно, просто, доступно. Познакомившись поближе, я убедилась, что для достижения такой эрудиции, помимо одаренности, а она была у него налицо, требовалась еще большая работоспособность. Он ее вырабатывал с детских лет, как и формировал свой творческий ум. Во многом он был обязан этим отцу, человеку умному и по природе прекрасному педагогу.

Как студент он запомнился мне в пальто с длинными карманами со строго отобранными книгами, „библиотекой на ходу“, которые он должен был за точно определенное время прочесть. Занимался всюду: в транспорте, в театре, в кино, в гостях. Занимался самозабвенно и с настроением. Мы, студенты, слушая его выступления на семинарах, на студенческих конференциях, смотрели на него как на „уникума“, чувствуя, что его знания намного превосходят не только наши, но и преподавателей, которые просто боялись его».

В восемнадцать лет Валентина Михайловна оказалась в занятом немцами Таганроге. Ее отца незаконно репрессировали в 1937 году, а мать умерла на следующий день после его ареста. Жившая в Таганроге родственница не дала молодой девушке погибнуть от голода. Не по годам повзрослевшая Валя, познакомившись на третьем курсе Новочеркасского индустриального института со своим сокурсником — Виктором Глушковым, сразу поняла — они должны быть вместе, это — судьба.

До сих пор хранится письмо, написанное Валей Папковой Виктору Глушкову 15 марта 1948 года, навсегда связавшее их. С разрешения Валентины Михайловны привожу его полностью.

«Вы, вероятно, очень удивитесь, Виктор, получив мое письмо, но я все же пишу, не имея даже уверенности в том, что оно дойдет до Вас. Пишу потому, что мне тяжело, может быть, последний раз встречать Вас и делать вид, что мы незнакомы. Я до сих пор не пойму, почему раззнакомились мы. Расстались кажется, по-хорошему, не причинив особенных неприятностей друг другу. Но позже вышло все так глупо… И вот прошло уже более двух лет, но вычеркнуть из памяти знакомство с Вами, Виктор, очень трудно, вероятно, потому, что Вы — Глушков. Мне бы очень хотелось еще раз поговорить с Вами, Виктор, узнать все, что касается Глушкова. Я почему-то до сих пор не верю, что Вы оставили наш институт. Если это так, то что же могло повлиять на Вас? Неужели Вы увлеклись устройством личных дел? Последнее можно было бы совместить. Виталий говорил, что Вы целиком переселились в университет. Это, безусловно, замечательно, так как там Вы найдете для себя большой простор, но и этот институт мог бы пригодиться Вам, тем более что до окончания осталось всего один год,

Я знаю, что ироническая улыбка сейчас не сходит с Ваших уст. Вы можете сказать, что меня это меньше всего касается, и будете по-своему правы, но не учитываете одного обстоятельства. Узнав Вас, Виктор, трудно сбилизиться с другим человеком. Вы становитесь мерилом всему. В моем представлении Вы недосягаемый великан, к которому можно только приблизиться по своему развитию, но не сравниться. Я и хочу, чтобы Вы навсегда остались таким. Да Вы такой и есть, ведь правда же?!

…Я от души Вам желаю успеха во всем. И если Вы сейчас личные дела поставили на первый план, то, безусловно, потом Вы наверстаете все.

С приветом, В.Папкова.»


В Нижнем Тагиле у меня была родственница — сестра матери, тетя Люба. Ее муж был главным инженером Нижнетагильского металлургического комбината. Мы решили ехать в Нижний Тагил и оттуда к месту работы, это еще километров сто. Вначале остановились у тети Любы, а на следующий день я поехал устраиваться. Но когда приехал (а на наши мытарства ушло недели две), то оказалось, что мне изменили назначение: пришло распоряжение Министерства высшего образования о направлении меня на работу в Новочеркасский индустриальный институт. Однако уже при всем желании возвращаться мы не могли, потому что денег не осталось ни копейки и занимать было не у кого. Я временно устроился в педагогическом училище в Нижнем Тагиле, а потом поехал в Свердловск, рассчитывая, что там в одном из институтов будет вакансия и я в какой-то мере выполню распоряжение Министерства высшего образования. В Свердловском университете работал профессор Сергей Николаевич Черников. Он был деканом факультета, занимался высшей алгеброй, теорией групп, а не математическим анализом, что было мне ближе. После нашего разговора у него возникло желание помочь мне. Поскольку мест в университете не оказалось, он позвонил в Лесотехнический институт (там у него был знакомый математик), и меня приняли на три четверти ставки ассистента. Министерство утвердило это назначение (ехать на Урал было мало охотников). С женой получилось проще: у нее был свободный диплом. Она устроилась довольно быстро в Свердловэнерго. На следующий год я уже работал старшим преподавателем.

С.Н. Черников сразу вовлек меня в свой кружок, и я стал заниматься совсем не тем, чем занимался в университете: теорией групп. Подготовленные мной три работы по теории функций так и остались неопубликованными. Безусловно, их можно было бы поместить в любой солидный математический журнал, однако под влиянием Черникова я уже потерял к ним интерес. Черников помог мне быстро освоить новые области математики: он был очень хорошим педагогом. Вместо штудирования учебников сразу давал конкретные задачи: сначала учебные, затем такие, которые в обычных задачниках не найдешь, а уж в конце специальные, проблемные. Занимаясь ими, я быстро освоил теорию групп. В 1949 году Сергей Николаевич предложил мне поступить в заочную аспирантуру, что я и сделал, оставаясь в то же время старшим преподавателем.

В конце 50-го года у меня была уже готова диссертация «Теория локально-нильпотентных групп без кручения с условием обрыва некоторых цепей подгруппы». Название мало что говорит, поскольку это специальная область математики. Правда, затем она вошла в учебники. В январе пятьдесят первого года я представил работу на защиту в Свердловский университет и в октябре того же года ее защитил. После этого меня назначили доцентом, и я стал думать о докторской диссертации. Мое внимание привлек мировой математический конгресс 1900 года, где знаменитый немецкий математик Гильберт поставил 23 проблемы тогдашней математики, наиболее крупные и сложные. Лишь недавно были решены некоторые из них. Решение каждой проблемы Гильберта становится сенсацией в науке. Мне хотелось разработать малоизученную область, и я занялся одной очень трудной проблемой из теории топологических групп, связанной с пятой проблемой Гильберта. В это же время состоялось мое знакомство с академиком Анатолием Ивановичем Мальцевым, работавшим тогда в Иванове. Он был математиком высочайшего класса и занимался заинтересовавшей меня областью — теорией групп и теорией линейных неравенств. Я стал посылать ему свои статьи, мы переписывались до самой его смерти (в Новосибирске). Так с 1951 года я начал заниматься практически новой областью. Входить надо было в теорию топологических пространств (это довольно сложная область). Я продолжал работать в Лесотехническом институте, читал лекции. Нередко ловил себя на том, что выписываю интеграл на доске, а в голове мелькают мысли об этой теореме. Я понимал, что если прекратить этот штурм, то потом очень много времени потратишь на восстановление уже достигнутого. Над пятой проблемой Гильберта работали также американцы. Я рассмотрел один частный случай, а потом Мальцев решил одну частную задачу. Затем я рассмотрел еще один более общий случай. Эти работы, включая мои предыдущие по нильпотентным группам, могли составить предмет докторской диссертации. Но к этому времени в теории топологии была сформулирована обобщенная проблема Гильберта. Так вот, я решил ее, т. е. сделал больше, чем американцы. Причем решил более простым методом, который лучше подходит и для исследования обычной проблемы Гильберта. Над основной теоремой по обобщенной пятой проблеме я бился три года подряд. Подсознание работало, даже когда я спал. Иногда ночью казалось, что все получилось. А утром вставал, садился за стол, смотрю — нет, где-то какая-то зацепка есть, логическая неувязка, ошибка. Трехгодичный непрерывный штурм закончился в 1955 году. Мы с женой поехали на Кавказ в туристический поход. На Казбеке при подъеме на ледник мне пришла в голову идея, позволяющая обосновать решение обобщенной проблемы Гильберта. Однако я приучил себя к тому, что в моих рассуждениях обязательно есть ошибка, и не сразу поверил себе. Начал искать ее, но все получается. Потом вдруг вроде нашел ошибку, но нет — снова получается. В поезде все записал, а потом еще шесть месяцев дорабатывал. Получилось страниц 60. Причем это было всего лишь доказательство одной теоремы. Пока еще никому в мире не удалось дать более короткого доказательства. Эта работа принесла мне известность среди математиков и огромное, творческое, что ли, счастье.

В 1955 году я подал докторскую диссертацию на защиту. Заканчивал работу в Московском университете, куда меня прикомандировали на шесть месяцев в докторантуру. Переписывал диссертацию раз пять-шесть. Я вообще оформляю статьи очень медленно, для меня это тяжелое дело. Поэтому хотя и подготовил диссертацию в Свердловске, где имел полную учебную нагрузку, но оформить ее там не успел. Труда было вложено очень много, потому что я занимался наиболее абстрактными областями в математике. Подавляющее число математиков-профессоров не сможет даже точно сформулировать то, что я доказал.


Исповедь. Последний подвиг ученого

«Жить и сгорать у всех в обычае,

но жизнь тогда лишь обессмертишь,

когда ей к свету и величию

своею жертвой путь прочертишь».

Б. Пастернак, «Смерть сапера»
Девять дней 1982 года

Рассказы В.М. Глушкова о его творческом пути, помещенные в этой части книги, продиктованы дочери Ольге в январе 1982 года, когда ученый после двух страшных коллапсов, надолго лишивших его сознания, находился в палате реанимации, и когда основные жизненные органы один за другим отказывались служить угасавшему телу.

Если бы судьба позволила Глушкову написать мемуары, конечно, они были бы много глубже, ярче, охватывали очень широкий круг людей и интересовавших его проблем. Но и то, что нам оставлено, представляет огромную ценность для истории науки, для понимания творческой биографии ученого и самое главное — актуально для нынешнего и будущего времени.

Можно лишь преклоняться перед мужеством ученого, сумевшего буквально на пороге небытия так много сказать о главном деле своей жизни, не проронив ни слова о том, как ему было невыносимо тяжело в эти последние дни.

Болезнь подкралась незаметно, когда В.М. Глушкову шел пятьдесят — шестой год и он был полон творческой энергии и далеко идущих замыслов. Благодаря характеру, огромной силе воли, он продолжал работать, преодолевая слабость, головную боль, мучительный кашель, скачущее давление. Считая недомогание временным, летом 1981 года полетел на Кубу. Нервное напряжение во время поездки перебороло начавшуюся болезнь. Вернулся как будто посвежевший, но вскоре все возобновилось. Однако для того чтобы подлечиться, времени не находилось — под руководством Виктора Михайловича в институте завершалось проектирование давно задуманной им макроконвейерной ЭВМ.

«По возвращении в Киев лечащий врач настояла на обследовании, — вспоминает Валентина Михайловна Глушкова. — Он согласился лечь в больницу на десять дней, после собирался поехать в Чехословакию. Однако болезнь прогрессировала. Ему становилось все хуже и хуже. Врачи терялись в догадках. Вначале считали, что это преждевременный склероз мозга, потом диагнозы часто менялись. Первыми забили тревогу москвичи — главные конструкторы систем в оборонной промышленности, неоднократно приезжавшие к ученому на консультации. Видя беспомощность киевской медицины, они договорились о переводе мужа в Кремлевскую больницу. Нас поместили вместе. Это было исключением из очень жестких правил. На этом сумели настоять московские коллеги, учитывая его состояние и мою просьбу. Друзья и соратники Виктора Михайловича по Москве — Игорь Антонович Данильченко, Юрий Евгеньевич Антипов, Юрий Александрович Михеев, Анатолий Иванович Китов, а также сотрудники Института кибернетики АН Украины — Анатолий Александрович Стогний, Виктор Алексеевич Тарасов организовали „штаб“ помощи больному. Они оперативно решали вопросы, связанные с организацией консультаций лучших врачей-ученых страны, выполнением часто весьма не простых рекомендаций.

Несмотря на все старания врачей и их добровольных помощников, после перевода в московскую больницу ему стало хуже. Пятого ноября 1981 г. произошло резкое снижение всех жизненных функций. Виктора Михайловича перевезли в реанимационное отделение и подключили искусственное дыхание. Шли дни за днями. Сознание не возвращалось. Многочисленные консилиумы были безрезультатными. Врачи считали, что это конец. Меня в реанимационную палату не пускали. Я была в отчаянии. Видя это, Раиса Афанасьевна Михеева — жена Ю.А. Михеева, которая с первого дня стала моей незаменимой помощницей, достала белый халат и шапочку и под видом сестры стала ежедневно приходить к Виктору Михайловичу. К сожалению, ее рассказы не могли принести утешения ни мне, ни членам „штаба“. Так продолжалось десять мучительных дней. На одиннадцатый случилось чудо — у Виктора Михайловича задвигались зрачки, а в последующие дни стало восстанавливаться дыхание, спал отек легких, заработали остальные органы.

Врачи по-прежнему не могли установить причин болезни, высказывали разные догадки. Я настояла на консультации европейской знаменитости — профессора Цюльха из Кельна. Он ознакомился с деревом симптомов, связался с банками медицинской информации США, Англии и других стран. Аналогичный случай был зафиксирован в Сингапуре. Было установлено, что это опухоль продолговатого мозга (астроцетома), органа, который управляет деятельностью основных органов тела. Профессор сказал, что у Виктора Михайловича болезнь зашла слишком далеко. Спасти его невозможно…

О заключении профессора мужу не сказали. Но он сам уже все „вычислил“ и понимал, что обречен… В одном из последних разговоров вспомнил наши вечерние прогулки в молодости, когда дарил мне далекие созвездия, и, желая утешить, сказал:

— Не расстраивайся! Ведь через подаренные мной созвездия когда-нибудь будет проходить свет с нашей Земли, и на каждом мы будем появляться снова молодыми. Так и будем в вечности всегда вместе!

В 58 лет закончилась его жизнь, очень яркая, интересная, но и не легкая».

Вероятно, многие помнят кинокартину «Девять дней одного года». Обреченный ученый-физик мужественно продолжает исследования в оставшиеся для жизни дни, понимая, что имеет возможность получить уникальные результаты для науки, которой беззаветно служил. Девять дней Виктора Михайловича, в которые он диктовал дочери Ольге свою «исповедь», — это тоже дни подвига, но не в кинофильме, а в реальной жизни!

У Валентины Михайловны хранится оттиск первой научной работы Виктора Михайловича. Много лет назад он написал на титульной странице: «Моей дорогой соучастнице единственной Валечке. 17.VI. 1950 г. В.Глушков».

Уходя из жизни он оставил семье частичку самого себя — свой голос, свои последние рассказы, подводящие итог творчества и совместной работы с многочисленными соратниками по Институту кибернетики АН Украины — его любимому детищу, его надежде.

Крутой поворот

Во время подготовки и защиты докторской диссертации в Московском университете я жил вместе с докторантами с Украины, которые представили меня академику АН Украины Б.В. Гнеденко, бывшему в то время директором Института математики и академиком-секретарем Отделения математики и механики АН Украины.

В марте 1956 г. по его приглашению приехал в Киев. Это была, кстати, моя первая поездка туда. Гнеденко ознакомил меня с Киевским университетом и личными делами молодых специалистов, заканчивающих университет и отобранных для работы в Институте математики АН Украины (для пополнения бывшей лаборатории С.А. Лебедева).

Один любопытный эпизод. Гнеденко предложил мне на выбор заведование лабораторией или кафедру в Киевском университете. Мы зашли в кабинет декана мехмата. Он сидел такой важный, поинтересовался, какой кафедрой я заведовал. Услышав, что это Уральский лесотехнический институт, кафедра теоретической механики, отнесся ко мне с недоверием, сказал, что здесь университет столичный, тут высокие требования. Короче, мне сразу расхотелось в университет. Но я, впрочем, с самого начала решил, что пойду именно в академию, а не в университет. А в академии Гнеденко сводил меня к Г.Н. Савину. Он был тогда вице-президентом и отвечал за секцию физико-математических и технических наук. Он тоже немножко засомневался, смогу ли я руководить сразу сотнями сотрудников, если на Урале руководил единицами (а это действительно совсем разные вещи: руководить маленькой кафедрой и руководить институтом — организационно абсолютно не похоже одно на другое). Но когда мы поговорили о том, как я собираюсь все это делать, он одобрил мои намерения и согласился принять на работу в академию.

Во время второго приезда вопрос моего перехода в Киев был окончательно решен. Я стал заведующим лабораторией вычислительной техники Института математики. Предполагалось, что лаборатория будет реорганизована в Вычислительный центр АН Украины в соответствии с вышедшим в 1955 году постановлением о создании вычислительных центров в академиях союзных республик, в том числе в Украине.

«Так получилось, что я был старшим в лаборатории вычислительной техники Института математики АН Украины в те дни, когда В.М. Глушков впервые появился в Феофании и попросил завизировать заявление о зачислении в институт, — вспоминает сотрудник лаборатории З.Л. Рабинович. — Коллектив лаборатории был по тем временам очень сильным. Может быть поэтому вначале Глушков был встречен с некоторым недоверием, хотя как человек он сразу же вызвал симпатии буквально у всех сотрудников. Возникшие сомнения в гротескной форме выразил умелец и острослов, талантливый техник Ю.С. Мозыра, к сожалению, безвременно скончавшийся:

С математических высот
Ты спущен к нам в водоворот,
С Олимпа, где слагают оды,
Туда, где крик стоит: „Диоды!“,
Где каждому подай паяльник.
Попробуй, справишься ль, Начальник!

Справился. Да еще как! И, конечно, в этом нелегком „овладении“ коллективом Глушкову помогли блестящий интеллект, человеческое обаяние, увлеченность новой наукой.

Из научных исследований, проводимых в то время в лаборатории на базе созданной под руководством Лебедева Малой электронной счетной машины (МЭСМ), следует отметить важные работы по теории программирования, приведшие впоследствии к созданию адресного языка (B.C. Королюк, Е.Л. Ющенко), а также методы решения статистических и оптимизационных задач (Б.В. Гнеденко, B.C. Михалевич и др.). Весь комплекс работ на МЭСМ обеспечивал эксплуатационный персонал под руководством Л.П. Дашевского (С.Б. Погребинский, А.Л. Гладыш и др.). Эти же сотрудники участвовали и в других разработках. На базе МЭСМ проводилось испытание новых логических элементов, в частности, феррит-диодных (Е.А. Шкабара, Б.Н. Малиновский) и полупроводниковых (А.И. Кондалев и др.).

Была уже введена в опытную, а затем и в регулярную эксплуатацию машина СЭСМ — первый в Союзе матрично-векторный процессор с конвейерной организацией вычислений и совмещением ввода данных и расчетов. Архитектура СЭСМ была построена по идеям С.А.Лебедева. Отметим в связи с этим, что Глушков „не отгородился“ от этой работы, а, наоборот, проявил очень важную и характерную для него инициативу. Преодолев традиционное сопротивление разработчиков (работа сделана, чего уж там!), он засадил нас за написание книги. Для этого были веские основания: СЭСМ содержала ряд структурных новинок, имеющих определенное самостоятельное значение (динамические регистры на магнитном барабане, система встроенной диагностики и др.).

Книга была переиздана в США (по-видимому, это была одна из первых советских — книг по вычислительной технике, появившихся за рубежом).

Исключительно важной работой лаборатории в то время было создание ЭВМ „Киев“. Она была начата по инициативе и под руководством Гнеденко, и ответственным за нее был Л.Н. Дашевский. Машина предназначалась для организуемого (на базе лаборатории) Вычислительного центра и должна была представлять существенно новое слово в вычислительной технике — иметь асинхронное управление (по-видимому, впервые в Союзе), ферритовую оперативную память, внешнюю память на магнитных барабанах, ввод-вывод чисел в десятичной системе счисления (аналогично СЭСМ), пассивное запоминающее устройство с набором констант и подпрограмм элементарных функций, развитую систему операций, включая групповые операции с модификаций адресов, выполняемых над сложными структурами данных, и др. Разработку вначале выполнял тот же коллектив, что и создал МЭСМ; в выборе операций участвовали B.C. Королюк, И.Б. Погребыский, Е.Л. Ющенко — сотрудники Института математики АН Украины. В.М. Глушков подключился на завершающем этапе технического проектирования, сборки и наладки машины и, будучи вместе с Дашевским и Ющенко руководителем работы, принял в ней активное участие, Завершилась она уже в стенах Вычислительного центра АН Украины.

Разработка двумашинной системы радиолокационного обнаружения воздушных целей и наведения на них самолетов-истребителей была еще одной большой работой, начатой до прихода В.М. Глушкова. Для этого были скомплектованы две небольшие группы, руководителями которых стали энтузиасты Малиновский и Рабинович. Б.Н. Малиновский занимался машиной первичной переработки радиолокационной информации, а я — машиной наведения. Работали в хорошем контакте между собой и, что далеко не всегда бывает, с нашим московским заказчиком (И.С. Овсиевич, В.В. Липаев и др.). Это, безусловно, способствовало творческой атмосфере в коллективе и, соответственно, успеху в работе. Я помню, что сотрудников наших групп по двум направлениям работы представители заказчика называли соответственно „мали-нята“ и „рабинята“.

С приходом Глушкова работа получила существенно новое звучание. Он начал подводить под нее строгую научную базу, формулировать математическую теорию процесса наведения. Результаты были одобрены заказчиком и использованы по назначению для создания штатных систем ПВО.

Таким образом, ни одна из проводимых в лаборатории работ не была заброшена. Напротив, все получили логическое завершение. Специально это оговариваю, потому что одной из замечательных особенностей ученого было умение воспринимать чужие идеи, подхватывать и развивать их, если они того заслуживали. К сожалению, бывают ученые, которые любую не высказанную ими идею встречают буквально в штыки и требуют от своих сотрудников лишь исполнения их собственных замыслов. Глушков же говорил, что руководитель, который не мешает своим инициативным сотрудникам, — это хороший руководитель, но если он еще и помогает им, то это уже руководитель отличный. Именно таким и был В.М.Глушков, несмотря на то, что сам был мощным генератором идей».

А вот что запомнилось о том времени С.С. Забаре, тогда молодому специалисту:

«В 1956 году в числе пятерых студентов-выпускников радиотехнического факультета Киевского политехнического института я по счастливой случайности, был распределен в лабораторию вычислительной техники Института математики АН Украины. Это был первый набор молодых специалистов в вычислительную технику, о которой нам ни слова не говорили в институте, мы знали о ней что-то понаслышке и, конечно же, в фантастическо-романтической окраске.

Все приходилось познавать заново, доучиваться в процессе работы. Творческая атмосфера в лаборатории была удивительной. Здесь незадолго до нашего прихода была создана первая в Европе вычислительная машина МЭСМ и работали Л.Н. Дашевский, Е.А. Шкабара, З.Л. Рабинович, Б.Н. Малиновский, С.Б. Погребинский, А.И. Кондалев, А.Л. Гладыш и др. Тогда все они были молодыми (немногим за тридцать), а сегодня мы говорим о них как об „отцах-основателях“. Это была плеяда подвижников-энтузиастов. Сами по себе яркие личности, озаренные талантом академика Лебедева, окрыленные выдающимся успехом своей работы, они, казалось, не ощущали границ своих возможностей. Работать с ними, жить в атмосфере их интересов, заслужить их признание было подлинным счастьем. И мы, молодые специалисты (общежитие за городом, зарплата минимальная), не мыслили себе другой судьбы, других учителей.

Вот в эту обстановку и попал в 1956 г. Глушков. Ему было не просто, потому что после Лебедева лидером можно было стать только за счет интеллекта, а не по должности.

Что с самого начала поразило в Викторе Михайловиче и сразу привлекло к нему? Прежде всего комплексное видение проблемы. Как будто он смотрел на. наш мир с какой-то поднятой над землей точки и обозревал все пространство сразу. Все наши „старички“ были отличные специалисты, но все-таки в достаточно узкой области, а Виктор Михайлович обладал даром охватывать сразу всю совокупность проблем и при этом остро чувствовать направления перспективного развития. Я ясно помню, как в первых же своих высказываниях о вычислительной технике он четко сформулировал основные идеи ее развития, определил ближние и дальние цели нашей работы в этой области. Мы были поражены способностью Виктора Михайловича быстро вникать и профессионально разбираться практически во всех вопросах, связанных с созданием ЭВМ.

Когда мы впервые начали активно сотрудничать с другими союзными школами кибернетиков, прежде всего с москвичами, то мне поначалу было трудно избавиться от некоторой робости перед уверенной поступью столичных корифеев. Виктор Михайлович добродушно подсмеивался над нами: „Не нужно чувствовать себя провинциалами“. Как-то он взял с собой молодых специалистов, в том числе и меня, на конференцию по вычислительной технике, проходившую в Москве, где выступали с докладами тогда уже Герои соцтруда главные конструкторы С.А. Лебедев, Ю.Я. Базилевский и другие известные специалисты. Увидя нас после конференции, Виктор Михайлович спросил:

— Как, молодежь, потягаемся? — Вроде бы да! — Ну, раз можем, значит, будем!

Вот эта неискоренимая вера, что все по плечу, только нужно как следует взяться, была очень характерна для Виктора Михайловича. И она передавалась его „команде“, и с ним не страшно было „ввязываться“ в самые сложные проекты».

Б.В. Гнеденко разрешил мне только три дня в неделю бывать в лаборатории, а остальные три были даны для изучения предмета, вхождения в курс дела. На время моего отсутствия каждый день назначался временно исполняющий обязанности заведующего лаборатории из числа кандидатов наук (Л.Н. Дашевский, Е.А. Шкабара, Б.Н. Малиновский, А.И. Кондалев).

Гнеденко разрешил работать в нашей лаборатории B.C. Королюку и Е.Л. Ющенко, так что в ней оказалось шесть кандидатов наук. (Правда, Королюк потом не вошел в ее состав.)

Вычислительные машины тогда проектировались на основе инженерной интуиции. Мне пришлось разбираться в принципах построения ЭВМ самому, у меня стало складываться собственное понимание работы ЭВМ. С тех пор теория вычислительных машин стала одной из моих специальностей. Я решил превратить проектирование машин из искусства в науку. То же самое, естественно, делали и американцы, но у них эти материалы появились позже, хотя сборник по теории автоматов увидел свет в США в 1956 году.

Теория автоматов, послужившая основой для проектирования ЭВМ, была тогда развита слабо. Первый, кто высказал мысль о возможности применения математической логики для проектирования технических устройств был, по-видимому, Шенон — в США, а у нас — В.И. Шестаков, М.А. Гаврилов. Они применили простейший аппарат формальной математической логики для конструирования переключательных цепей коммутаторов телефонных станций. Но оказалось, что он пригоден и для простых электронных схем, поэтому в послевоенные годы, когда начала развиваться цифровая вычислительная техника, стали предприниматься попытки применения этого аппарата для решения задач синтеза схем ЭВМ.

Я начал работать над этой проблемой и организовал семинар по теории автоматов. Одна из первых моих работ заключалась в том, что я нашел гораздо более изящное алгебраически, простое и логически ясное понятие для автомата Клини и получил все результаты Клини. И самое главное — в отличие от результатов Клини я развивал теорию, направленную на реальные задачи проектирования машин. На семинаре мы рассматривали вопросы проектирования машины «Киев», и можно было увидеть, что работает из моей теории, а что нет.

«Душой семинара стала впоследствии любимая ученица Виктора Михайловича Юля Капитонова, а его постоянными участниками я и Виктор Боднарчук, — вспоминает А.А. Летичевский. — Это был романтический период, когда мы жили в новой науке, рождавшейся на наших глазах, гордились, когда удавалось решать задачи, поставленные нашим учителем во время лекций. Иногда семинар продолжался в кафе „Чай-кофе“, на Крещатике и тогда он назывался „чайкофским“. Мы горячо спорили и писали формулы на гладких поверхностях столов и салфетках.

Теория автоматов была выбрана Глушковым не случайно. Это был хорошо продуманный тактический ход. Как алгебраист Глушков видел, что понятие автомата, идущее от Клини, Мура и других авторов знаменитого сборника „Автоматы“, вышедшего в 1956 году в Принстоне под редакцией Шеннона и Маккарти и в том же году переведенного на русский язык под редакцией А.А. Ляпунова, представляло собой богатую возможностями математическую модель дискретного преобразователя информации, для изучения которой мог быть применен мощный аппарат современной математики. В то же время разработка прикладной теории на основе красивого математического аппарата могла привлечь внимание инженеров, которым в то время недоставало математической теории для разработки устройств, содержащих запоминающие элементы. Кроме того, в силу большой общности, теория автоматов могла стать основой для разработки моделей кибернетических систем в самых разнообразных прикладных областях.

Глушков провел огромную „научно-просветительскую“ работу в лаборатории и вне ее, прочитав специальные курсы лекций по экзотическим в то время дисциплинам: алгебре логики, теории автоматов, проблемам кибернетики и др., а также, что особенно важно, в научных разговорах с сотрудниками неустанно пропагандировал и внедрял в сознание свое научное мировоззрение. Эта его деятельность имела очень большое значение особенно в период организации на базе лаборатории Вычислительного центра АН Украины. Свежий ветер подул уже буквально с первого дня прихода Глушкова. Он начал с ознакомления с тем, что было уже сделано, и затем дал мощный импульс развитию этих работ, но уже в новом, предложенном им направлении».

Сохранившееся в личном деле В.М. Глушкова заявление поясняет, какой ценой создавался этот импульс:

«Территориальный отрыв лаборатории вычислительной техники от Института математики, специфический характер выполняемых ею работ и наличие большого штата сотрудников приводит к тому, что мне, как заведующему лабораторией, приходится большую часть своего времени тратить на решение административных вопросов в ущерб научной деятельности, которой я продолжаю заниматься сейчас лишь ценой крайнего напряжения сил. Считая такое положение ненормальным, прошу освободить меня от должности заведующего лабораторией и зачислить на должность старшего научного сотрудника Института математики. 12.IV.57 г. В.Глушков».

Б.В. Гнеденко наложил резолюцию: «С освобождением согласиться не могу, считаю необходимым немедленно получить должность заместителя заведующего лабораторией по научной работе».

Руководить — значит направлять и заинтересовывать

Я впервые руководил большим коллективом, поэтому пришлось выработать определенные организационные принципы. О них я нигде специально не писал, но следовал им неизменно, и это всегда приводило к успеху.

Единство теории и практики — принцип, вроде, не новый, но понимается он обычно односторонне, в том смысле, что теория должна иметь практические применения. Вот и все. А я его дополнил тем, что не следует начинать (особенно в молодой науке) практическую работу, какой бы важной она не казалась, если не проведено ее предварительное теоретическое осмысление и не определена ее перспективность. Может оказаться, что надо делать совсем не эту работу, а нечто более общее, что покроет потом пятьсот применений, а не одно. Приведу такой пример.

С самого начала работы в лаборатории было очень много заказчиков на моделирование различного рода дискретных систем. Нас буквально засыпали всякими проектами постановлений высоких органов. Уже позже, после образования Вычислительного центра, когда был создан отдел Т.П. Марьяновича (точнее, сначала лаборатория при моем отделе), ему было поручено этим заниматься. И я дал ему восемь тем, т. е. восемь заказов, восемь карточек заказчиков. А у него шесть человек. С недоумением он пришел ко мне, и я посоветовал ему создать универсальный язык для моделирования дискретных систем (его потом назвали СЛЭНГ). Я собрал всех заказчиков, провел с ними «воспитательную работу», и они сказали, что это именно то, что им нужно. Вот таким способом мы добились очень широкого применения наших фундаментальных исследований.

Принцип единства теории и практики нельзя понимать утилитарно, т. е. считать, что каждая задача, каждая теория обязательно должна быть связана с практикой. Для математики, например, это не так. «Здание» математики, построенное из старых математических дисциплин, настолько прочно связало себя с практикой и настолько высоко поднялось, что если вы, предположим, достраиваете какой-то этаж и не знаете, каким образом он будет связан с нижними, то можете быть уверены, что, если вы решаете действительно трудную задачу, это рано или поздно окажется полезным для практики. Но когда создается новая теория, в основании которой нет еще стройного базового здания, то появляются попытки строить не его, а воздушные замки. Это достаточно легко, но, как правило, бесперспективно для новой области исследований. Поэтому, пока не построен фундамент, строить теории, не опираясь на практику, очень опасно. Может оказаться, что совсем не в ту сторону идет строительство. Это я особенно подчеркиваю. Фундаментальная наука должна давать пользу многим сразу, не только одному. Если вы создадите метод проектирования машины применительно к сегодняшнему уровню техники с учетом всех особенностей составляющих ее элементов и так далее, то вы удовлетворите лишь свои потребности, но только на полгода, год, потому что через год появятся совершенно новые элементы, и этот метод у вас уже не будет работать, а если вы сделаете хорошую теорию, основанную и на этом и на многих других исследованиях, то вы можете помочь целой армии грамотных инженеров и вашими методиками будут пользоваться во всех уголках страны для того, чтобы решать эти задачи. Вот и получается, что фундаментальная наука очень практичная вещь, хотя на самом деле для ее развития надо вознестись в сугубо теоретическую область. Вот так я понимаю принцип единства теории и практики.

Следующий принцип — это принцип единства дальних и ближних целей. Он близок к первому, но подходит к вопросу с другой стороны, с точки зрения выполнения работ во времени. Дело заключается в том, что в кибернетике есть одна особенность. Когда развивались другие науки, не имевшие дела со столь большими системами, как кибернетика, то обычно рождение идеи о том, как решить задачу (особенно в математике), являлось главным. Это составляло 90 % дела. Если идея была верной, то ее оформление занимало 10 %. В биологических исследованиях эти цифры могут быть другими: 40 % — идея, а 60 % — труд по ее реализации. А в кибернетике получается так, что в некоторых случаях идея составляет около 0,01 %, а все остальное — 99,9 % — это ее реализация. Объясню это на примере. Мы с самого начала стали развивать направление, называемое искусственным интеллектом, связанное с построением разумных машин и соответствующих программ. На эту тему я написал книгу «Теория самоусовершенствующихся систем», и во «Введении в кибернетику» ряд разделов был посвящен специально этому вопросу.

Когда мой аспирант Стогний защитил в 1959 году кандидатскую диссертацию, я поручил ему работу по искусственному интеллекту, в частности, обучению машины русскому или украинскому, в общем, естественному человеческому языку, чтобы она понимала смысл предложения. И мы довольно быстро добились потрясающих вроде бы успехов. Могли «разговаривать» с машиной «Киев», как с маленьким ребенком. Она училась говорить, понимала, задавала вопросы, делала те же ошибки, которые делает ребенок, и т. д. Над такого рода вещами (это была оригинальная работа) работали в разных лабораториях мира. Одни переводили с русского языка на английский и наоборот, другие еще что-то делали. И оказалось, что уже первые попытки давали обнадеживающие результаты: идея уже есть, остается только ее реализовать, а исходя из старого опыта, который был накоплен в других науках, считали, что идея — это уже 40 % дела. Если на разработку идеи потребовалось два года, значит, на ее реализацию потребуется в полтора раза больше и через пять лет мы сделаем программы, которые будут переводить лучше любого переводчика с английского на русский, или сделаем такую машину, которая будет по пониманию языка и смысла хорошим собеседником на уровне человека и т. д. Но оказалось, что это далеко не так.

К сожалению, такая недооценка сложности кибернетических задач типична для периода становления любой науки. Такие заблуждения случаются даже у серьезных ученых, которые пытались свой опыт, полученный в старых науках, экстраполировать применительно к новым задачам. Я как-то быстро (может, потому, что занимался философией в свое время) это понял и таких ошибок не делал, таких предсказаний не давал.

Особенность больших систем в том, что от идей по их построению до их реализации лежит очень длительный путь. Отсюда и появился важный управленческий принцип — единства дальних и ближних целей. В чем он состоит? Поясню на примере. Надо решать задачу построения разумных машин? Надо. Есть много таких, кто на весь мир кричит: дайте мне 2000 человек, и я за пять лет сделаю (некоторые за три года) разумную машину! Мы с самого начала понимали, что это ерунда, профанация науки, и это очень портит молодежь. Но вместе с тем делать такую машину надо. Как же быть? Сказать, что нам нужно 10 тыс. человек и 100 лет, 30 или 25 лет работы — никто не пойдет на это. Поэтому мы и выдвинули этот принцип — единства дальних и ближних целей.

Я этот принцип формулирую так: в новой науке, каковой является кибернетика, не следует заниматься какой-то конкретной ближней задачей, не видя дальних перспектив ее развития. И наоборот, никогда не следует предпринимать дальнюю перспективную разработку, не попытавшись разоить ее на такие этапы, чтобы каждый отдельный, с одной стороны, был шагом в направлении к этой большой цели, и вместе с тем сам по себе смотрелся как самостоятельный результат и приносил конкретную пользу.

Я довольно быстро понял, что при руководстве большим коллективом с разнообразной тематикой нужно также применять принцип децентрализации ответственности. Его далеко не все придерживаются, хотя некоторые директора интуитивно к этому приходят. В чем он заключается? Я выделяю участки, ставлю руководителей (заместителей и т. п., ответственных за научные направления) и стремлюсь минимизировать свое вмешательство. Даже когда вижу, что делается неправильно, поправляю не конкретно, а по каким-то интегральным показателям. Если старший начальник будет по пятиминутному разговору отменять решение, на которое младший начальник потратил часы, то тогда правильного руководства не получится. Я же выдерживаю очень жесткую линию и никогда не вмешиваюсь. Единственное, что я могу сказать своему заместителю, — что приходили сотрудники (могу назвать их фамилии, если они этого хотели) и жаловались. Если это действительно ошибки моего заместителя, то надо найти их первопричину и тогда уж предъявлять претензии. Тут я и полтора часа могу потратить на разговор с ним для того, чтобы обсудить не отдельные частные вопросы, а стиль работы в целом. Такой метод дал мне возможность построить двухступенчатую иерархию управления. Но с трехступенчатой и более получается хуже, потому что как я ни учил некоторых своих помощников этим приемам, у них это не получалось, — они все время сбивались на то, чтобы самим все охватить. А когда на них наваливаются все новые и новые дела, то и решаются они плохо. Тут требуются еще выдержка и организационный склад ума, что-ли, чтобы правильно руководить людьми.

Когда что-то не ладится с точки зрения управления, следует обратить внимание, опять-таки, не на конкретные ошибки и конкретных лиц (хотя иногда бывает, что человек не справляется, и надо его заменить). Чаще всего дело заключается в том, что просто отсутствует механизм исполнения приказов и устава института, т. е. в основу управления не положены четкие организационные принципы.

Понятие децентрализации ответственности включает еще один важный момент. В настоящее время при построении иерархических систем чаще всего уровни ответственности распределяют в связи с уровнями компетенции, т. е. если кому-то поручен участок работы, то считается, что человек отвечает за все, что на нем делается. В частности, директор отвечает за все, что делается в институте, и может получить выговор от вышестоящей инстанции за какой-то проступок, который он в принципе не мог предотвратить. Это находится уже где-то на пятом или шестом уровне иерархии, и непосредственно директор сам контролировать это не может. А метод децентрализации ответственности предполагает, что если на этом участке что-то случилось, то взыскание должно быть вынесено тому, кто является непосредственным виновником данного проступка. А что касается заместителя директора, то ему может быть вынесено взыскание либо за то, в чем он лично виноват, либо за проступки его подчиненных по совокупности. В последнем случае ему предъявляется обвинение в том, что на подведомственном, контролируемом им участке плохо подобраны кадры и плохо проводится работа с ними. Работа с кадрами — это уже непосредственная обязанность начальника.

Меня всегда беспокоило отсутствие организаторских способностей у себя. И поэтому удивительно, что я стал заниматься организацией в науке.

Я привык, что если что-то делаю, то очень основательно знакомлюсь с областью своих исследований. Когда я занимался топологическими группами, то четко представлял, чего можно ожидать в мире от любого ученого, занимающегося этой проблемой, т. е. хорошо чувствовал ритм разработки проблемы и знал, что иду впереди на полголовы. Вот это чувство превосходства мне и необходимо, чтобы считать себя специалистом. А организаторские способности…

Вот Б.Е. Патон — он на три головы выше меня по организаторским способностям. Кое-что получается и у меня, но я считаю, что не за счет хороших организаторских способностей, а потому, что я имею довольно широкий кругозор и могу направлять исследования, ставить цели, задачи, т. е. могу заинтересовать людей. Вот это меня спасает. Кое-чему я, правда, научился. Даже некоторые организационные принципы сформулировал, но все равно это не моя сильная сторона. Как только у меня появляется свободное время, я начинаю доказывать теоремы, и это мне нравится. Тут я чувствую себя в своей стихии. А организаторская работа меня тяготит. Иногда, правда, становится интересно, когда есть дело и надо довести его до конца.

Героический период

В декабре 1957 года состоялось официальное решение правительства и президиума АН Украины об образовании самостоятельного учреждения — Вычислительного центра Академии наук Украины. К этому времени наш коллектив насчитывал немногим больше 100 человек. Академия наук Украины выделила средства для строительства здания Вычислительного центра на улице Лысогорской. Тогда же был построен жилой дом для сотрудников. Предполагалось, что на первых порах Вычислительный центр будет оборудован тремя ЭВМ: «Уралом-1», которая только начала выпускаться, «Киевом» и СЭСМ. В здании имелось для этого три больших зала. Оно было рассчитано на 400 рабочих мест. В 1959 году мы переехали из Феофании в Киев в еще недостроенное здание. Это был интересный период. По техническим условиям электронно-вычислительная техника должна работать в чистых помещениях с кондиционированным воздухом. А нам пришлось отлаживать и запускать «Киев», когда над машинным залом еще не было крыши. Помог здоровый энтузиазм нашего молодого коллектива. Потом здание было достроено.

ЭВМ «Киев» сыграла значительную роль в развитии наших работ, хотя и не пошла в серийное производство. Мы впервые вышли с этой машиной на всесоюзный рынок, второй экземпляр был куплен международным Институтом атомных исследований в Дубне. В 1956–1957 годах атомная физика «гремела», поэтому работа с этим институтом нам очень помогла и многому научила. С одной стороны, мы делали высокую науку, а с другой — учились работать с промышленностью.

В это время я занимался созданием основ теории ЭВМ. Это была моя главная работа, которая завершилась в 1961 году. Режим работы был очень напряженным. Мне приходилось целый день проводить в институте. Книги и статьи писал вечерами и ночью, спать ложился в пять утра. Правда, это сказалось на здоровье. В начале 1963 года из-за спазмов сосудов мозга мне пришлось даже лечь в больницу. После я уже не позволял себе вести такой образ жизни.

Виднейший алгебраист профессор А.Г.Курош, знавший Глушкова по докторантуре на возглавляемой ученым кафедре в Московском университете и высоко ценивший его, в одном из писем тех лет просил В.М.Глушкову вмешаться и властью старшего в семье заставить его принять более разумный режим жизни. Иначе последствия могли быть очень тяжелыми. Но Валентина Михайловна не могла справиться с мужем. Вот что она рассказывает о том времени: «Он работал по 18–20 часов в сутки. Задерживался на работе, забывал прийти поесть. Дома сразу садился за письменный стол и продолжал работать до глубокой ночи, а иногда до рассвета. К советам не прислушивался, на предупреждения об опасности таких перегрузок не реагировал. Почему так происходило, было понятно. Он в короткий срок должен был изучить все, что касалось нового направления в его научной деятельности. Кроме того, если раньше он отвечал только за самого себя, то теперь — за большой коллектив. Возникало много организационных вопросов, все новое пробивало ростки с трудностями. Выйдя из больницы он несколько отрегулировал режим работы, но особой передышки себе не давал. На его письменном столе под стеклом лежала записка: „Сегодня первый день твоей оставшейся жизни. Не теряй время даром“.

Подготовленная мной книга „Синтез цифровых автоматов“ вышла в свет в 1961 году и послужила основой целого направления у нас в институте, да и в стране, по-моему, некоторую роль сыграла. В 1964 году она была удостоена Ленинской премии (в представленный цикл работ входило несколько, но эта была главной). В эти же годы я написал ряд книг. Монографию „Введение в кибернетику“ заканчивал в больнице. Она была издана в 1964 году, а потом переиздана в США и во многих других странах, так же как и „Синтез цифровых автоматов“. В этот же период я написал теоретическую статью, создавшую основу для многих работ по теории автоматов с привлечением алгебраической теории автоматов. Называлась она „Абстрактная теория автоматов“ и была опубликована в журнале „Успехи математических наук“, т. е. была рассчитана на широкие круги математиков. Отдельной книжкой была переиздана в ГДР и еще в ряде стран. Под влиянием этой работы очень многие наши алгебраисты стали заниматься теорией автоматов. Но я должен сказать, что особенность нашей школы заключалась в том, что мы стремились держаться возможно ближе к практике.

Одновременно с теоретическими исследованиями мы развернули работы по созданию и применению вычислительной техники на Украине. Для автоматизации управления технологическими процессами в то время использовались простейшие аналоговые вычислительные устройства. Для каждого процесса создавалось специальное устройство. Причем в основном для тех, которые описывались дифференциальными уравнениями (не очень сложными).

Поэтому, когда мной в 1958 году была выдвинута идея создания универсальной управляющей машины УМШН на всесоюзной конференции в Киеве, она была встречана в штыки. Московские ученые во главе с академиком В.А. Трапезниковым, а также многие специалисты в области вычислительной техники дружно выступили против. Дело в том, что в тот период универсальная машина представлялась обязательно ламповой, а это требовало громадных залов, кондиционированного воздуха, т. е. никак не увязывалось с производством и управлением технологическими процессами.

Но уже в то время Б.Н. Малиновский занимался (один из первых в СССР) полупроводниковыми элементами для электронных вычислительных машин, и нам это очень пригодилось. К нему в отдел пришли молодые специалисты из Киевского политехнического института, и мы смело взялись за решение этой задачи, несмотря на удивительно единогласную оппозицию. (В то время я был заместителем Глушкова по научной части. — Прим. авт.) Молодые специалисты пополнили и другие отделы, занятые работой по созданию УМШН. Нами были высказаны все основные идеи, которые потом стали господствующими, — прежде всего о том, что машина обязательно должна быть полупроводниковой, транспортабельной, с высоконадежной — защитой, малоразрядной (26-разрядной) — этого достаточно для управления технологией в большинстве процессов; и самое главное — это идея об универсальном устройстве связи с объектом — УСО (УСО — набор аналого-цифровых и цифро-аналоговых преобразователей, управляемых от машины, с помощью которых машина подсоединяется к производственному процессу).

Разработка машины была поручена Малиновскому, он был главным конструктором, а я — научным руководителем. Работа была выполнена в рекордно короткий срок: от момента высказывания идеи на конференции в июне 1958 года до момента запуска машины в серию в июле 1961 года и установки ее на ряде производств прошло всего три года. Насколько мне известно, этот результат до сих пор остается мировым рекордом скорости разработки и внедрения.

Параллельно с созданием УМШН, получившей впоследствии название „Днепр“, мы провели с участием ряда предприятий Украины большую подготовительную работу по ее применению для управления сложными технологическими процессами. Вместе с сотрудниками металлургического завода им. Дзержинского (Днепродзержинск) исследовались вопросы управления процессом выплавки стали в бессемеровских конверторах, с сотрудниками содового завода в Славянске — колонной карбонизации и др. В порядке эксперимента впервые в Европе по моей инициативе было осуществлено дистанционное управление этими процессами в течение нескольких суток подряд в режиме советчика мастера. Начались исследования по применению машин „Днепр“ для автоматизации плазовых работ на Николаевском заводе им. 61 коммунара. В них участвовали Б.Н. Малиновский, В.И. Скурихин, Г.А. Спыну и др.

Потом выяснилось, что американцы несколько раньше нас начали работы по универсальной управляющей полупроводниковой машине, аналогичной „Днепру“, но запустили ее в производство в июне 1961 года, одновременно с нами (вероятно, имеется в виду американская машина РВ-300. — Прим. авт.). Так что это был один из моментов, когда нам удалось сократить до нуля разрыв по отношению к американской технике, пусть в одном, но очень важном направлении. Заметьте также, что наша машина была первой отечественной полупроводниковой машиной (если не считать спецмашин). Потом оказалось, что она прекрасно выдерживает различные климатические условия, тряску и пр.



Управляющая машина широкого назначения „Днепр“ (УМШН)



В.М.Глушков за пультом ЭВМ „Днепр“ (1960 г.). Стоят: В.И.Скурихин, Л.А.Корытная, Л.А.Жук, В.С.Каленчук, Б.Н.Малиновский.


Эта первая универсальная полупроводниковая машина, пошедшая в серию, побила и другой рекорд — рекорд промышленного долголетия, поскольку выпускалась десять лет (1961–1971), тогда как этот срок обычно не превышает пяти-шести, после чего требуется уже серьезная модернизация. И когда во время совместного космического полета „Союз-Аполлон“ надо было привести в порядок демонстрационный зал в Центре управления полетами, то после длительного выбора существовавших в то время машин (в 1971-м или 1972 году началась эта работа) выбор все-таки остановился на „Днепре“, и два „Днепра“ управляли большим экраном, на котором все отображалось, — стыковка и т. п. (система делалась под руководством А.А.Морозова. — Прим. авт.). Машина эта пошла на экспорт и работала во многих социалистических странах.

Следует сказать, что семилетним планом (1958–1965) строительство заводов на Украине не предусматривалось. Первые „Днепры“ выпускал Киевский завод „Радиоприбор“. Одновременно с разработкой машины „Днепр“ в Киеве стал строиться, по нашей инициативе, поддержанной правительством, завод вычислительных и управляющих машин (ВУМ) — теперь Электронмаш. Так что разработка „Днепра“ положила начало крупному заводу по производству ЭВМ.

Так закончился героический период нашего развития. Я называю это время героическим потому, что нам приходилось делать не только то, что было положено, но и значительно больше и в очень трудных условиях.

„Энтузиазм конца 50-60-х — это не миф, а та реальность, которая объясняет взлет и развитие кибернетики на Украине, а также создание одного из крупнейших научных институтов АН Украины — Института кибернетики, — вспоминает участница создания „Днепра“ Л.А. Корытная. — Будучи директором Вычислительного центра АН Украины, академик Глушков делал ставку на молодых, Вчерашние выпускники вузов становились в отделах Вычислительного центра ведущими разработчиками средств вычислительной техники и программного обеспечения. В конце 50-х на всесоюзных конференциях работа целых секций посвящалась лишь вопросам устойчивости полупроводникового триггера, а в Вычислительном центре АН Украины в это время уже был создан полупроводниковый функциональный набор элементов для ЭВМ. На одном из киевских предприятий, для которого отделом управляющих машин был разработан эскизный проект специализированной ЭВМ, эти элементы были изготовлены с использованием новых (на то время) технологий. На их основе разработаны и прошли испытания макеты отдельных устройств машины. Вот почему идея создания УМШН, высказанная Глушковым, была воспринята коллективом сотрудников как реальная задача. Даже сегодня сроки разработки, создания опытного образца и соответствующей технической документации кажутся фантастическими. Однако чудес не бывает — за этими двумя годами скрываются практически неограниченный рабочий день каждого участника разработки и абсолютная отдача всех творческих сил, граничившая с самопожертвованием. Так и пришел в наш коллектив декабрь 1961 года, когда принимать УМШН (как законченную разработку) приехала Государственная комиссия. Уже после некоторые члены комиссии в порыве откровенности признались, что просто не верили в существование опытного образца готовой к серийному выпуску первой в Союзе полупроводниковой управляющей ЭВМ и ждали… конфуза киевлян. Однако, как известно, УМШН успешно прошла все госиспытания и была запущена в серийное производство. С этими испытаниями у меня и связано одно из самых ярких воспоминаний.“

„Судьбе было угодно распорядиться так, что самые ответственные температурные испытания УМШН проходили накануне моего дня рождения, поэтому память остро запечатлела все события того дня. Именно шестого декабря меня, как одну из разработчиц структуры машины и разработчицу центрального устройства управления, назначили ответственной за проведение температурных испытаний. При этом условия были весьма специфичны: „термокамерой“ оказалась рабочая комната, где находился испытуемый образец. Представьте такую картину: окна и двери комнаты закрыты наглухо, щиты-отражатели все тепло от специальных нагревателей концентрируют в рабочей зоне машины, а ты сидишь за пультом в этой „духовке“ и выполняешь все операции по запуску тест-программ и контрольных задач, следишь за правильностью их выполнения, осуществляешь поиск возникших неисправностей в регламентированные отрезки времени и т. д., и т. п. Выдержать такую „температурную“ нагрузку (один просчет, и всему конец!), конечно, могли только те, кто понимал, что они сами проходят критическую точку оценки своего труда. Завершились эти испытания успешно к 23.00. Кто-то из ребят меня (полуживую) проводил к нашему жилому дому, который был в свое время построен рядом с административным корпусом. Короткий отдых, и в 2 часа ночи я опять была „в строю“, так как другие виды испытаний после моего ухода продолжались. Восторг, с которым встретили меня мои товарищи (объятия и поцелуи), красноречивее всяких слов подтвердил: „Машина прошла испытания“. И только тогда (ведь было уже 7 декабря) всем, кто был рядом, я призналась, что пришел мой день рождения и что в сумке, которую снарядила мама, есть все, чтобы его отметить. Мы праздновали в комнате отдыха ночью, и у традиционного „наполеона“, которым в моем доме отмечался каждый день рождения, на этот раз был какой-то особенный вкус. Вероятно потому, что этот праздник был праздником победителей, среди которых были А.Г. Кухарчук, B.C. Каленчук, Л.А. Корытная, В.М. Египко, С.С. Забара, И.Д. Войтович, Н.К. Бабенко, А.И, Толстун и др.“

К сожалению, героический период с точки зрения организации работ и области производства машин продолжается до сих пор.

По этому поводу я много раз выступал, писал различные докладные записки. Но, увы, в организационных делах, как я однажды подсчитал, у меня коэффициент полезного действия не превышает 4 %.

Что это означает? Это означает, что для того чтобы добиться хотя бы начала решения какого-либо вопроса, нужно постучать, толкнуться и 25 разных дверей. И это при том, что после успеха „Днепра“ я, как правило, нигде не получал отказа и скептики немножко приумолкли. Но такое „подушечное“ согласие еще хуже.



Людмила Александровна Корытная


Работы по управляющим машинам не закончились на „Днепре“. Забегая вперед, отметим основные последующие разработки.

В 1967 году Киевский завод ВУМ приступил к выпуску новой управляющей ЭВМ „Днепр-2“, разработанной Институтом кибернетики АН Украины (В.М. Глушков, А.Г. Кухарчук и др.) совместно с заводом. В этой машине были реализованы сложная многоуровневая система прерываний, работа в режиме разделения времени, эффективная операционная система реального времени и др. К сожалению, вскоре машина была снята с производства.

В 1976 году появился терминальный процессор „БАРС“ (В.И. Скурихин, А.А. Морозов и пр.). На международной выставке в Дрездене он был отмечен золотой медалью. Использовался на ряде производств. В 1977 году был создай и выпущен малой серией управляющий вычислительный комплекс М-180, включающий систему технических средств сопряжения ЭВМ с объектами „Сектор“ (Б.Н. Малиновский, П.М. Сиваченко, А.В. Палагин, Ю.Я. Яковлев, В.Б. Реутов).

Вопреки авторитетам

В 1962 году Вычислительный центр был преобразован в Институт кибернетики АН Украины. Образованию Института, естественно, предшествовала подготовительная работа, во время которой мои отношения с Б.В. Гнеденко несколько испортились.

В 1959 году он вместе со Е.А. Шкабарой поднял кампанию за образование Института кибернетики. Мол, Вычислительный центр — то Вычислительный центр, а академии нужен институт кибернетики. Киевская пресса сразу это подхватила. А мы с самого начала были созданы как институт, направленный на решение проблем кибернетики.

Поэтому эта было уже прямым ударом против нас, — они хотели превратить нас в счетную станцию, а всех квалифицированных специалистов забрать в новый институт.

Мы, конечно, не остались равнодушными и выступили в газете по поводу того, что институт кибернетики уже есть и речь идет о его укреплении. Отдел науки ЦК КПУ и объединенный партком АН Украины разобрались, в чем дело, и приняли решение: по рекомендации президиума АН Украины кибернетику следует развивать у нас. И в феврале 1962 года Вычислительный центр был преобразован и получил новое название — Институт кибернетики, тогда еще в скобках писали

„с вычислительным центром“, а потом стали просто писать: Институт кибернетики.

Гнеденко в конце концов после бурных собраний в Институте математики подал в отставку и уехал в Москву.

Отдел Н.М. Амосова после ухода Гнеденко перевели из Института математики к нам. Фактически Амосов у нас и раньше работал. Мы ему делали аппарат „сердце-легкие“, у нас были маленькие мастерские. Это был первый в СССР аппарат, примененный Амосовым при операциях на сердце. Затем у нас были сделаны искусственные клапаны (для сердца), было выстроено здание, в котором разместилась лаборатория Амосова. Шкабара перешла на работу к Амосову, а потом в Институт физиологии им. А.А. Богомольца.

Институт стал быстро расти. Через два-три года исследования охватили практически все области кибернетики. Научные отделы были объединены в секторы теоретической и экономической кибернетики, кибернетической техники, технической, биологической, медицинской кибернетики.

В области теории ЭВМ продолжалось быстрое развитие абстрактной и прикладной теории автоматов. Появились работы по вероятностным автоматам, вопросам надежности функционирования автоматов, экономного и помехоустойчивого кодирования. Центр тяжести исследований от конечных автоматов начал перемещаться к бесконечным. Наметилась связь между теорией автоматов и теорией формальных грамматик. Разрабатывались новые методы анализа и синтеза автоматов. Кроме меня в этих исследованиях активно участвовали А.А. Летичев-ский и Ю.В. Капитонова. Их работы получили широкую известность.

Продолжались работы по конструированию ЭВМ. Еще в 1959 году у меня родилась программа работ по машинам для инженерных расчетов. Она была начата с разработки цифрового вычислительного автомата (даже не в 1959 году, а несколько раньше, в начале 1958-го, а в 1959 году она уже ясно была сформулирована, я даже делал специальный доклад). Первые попытки были не совсем удачными, точнее — разработчик оказался неудачный. Он был больше теоретиком, а я пытался заставить его строить реальную машину, которая обладала бы элементами разумности. В этот момент появились другие помощники (С.Б. Погребинский, В.Д. Лосев и др.), и мы в 1963 году запустили в серийное производство машину „Промшь“.

К этому времени мы уже поняли, что нам необходимо СКВ. Оно было создано в 1963 году, а фактически зародыш его в институте появился значительно раньше. Машину „Промшь“ делал с 1959 года тот коллектив, который перешел в СКВ.

Когда она была готова, ее начал выпускать Северодонецкий завод вычислительных машин (ВУМ еще строился). Машина была по сути новым словом в мировой практике, имела в техническом отношении целый ряд новшеств, в частности память На металлизированных картах. Но самое главное: это была первая широко применявшаяся машина с так называемым ступенчатым микропрограммным управлением (на которое позже я получил авторское свидетельство).



В.М. Глушков и разработчики ЭВМ „Промiнь“. Слева направо: Н.А. Король, С.Б. Погребинский, Л.Н. Рогач, В.Д. Лосев, A.M. Дородницына, В.И. Журибеда, И.И. Попов, А.А. Стогний, А.И. Толстун


К сожалению, мы не запатентовали новую схему управления, так как тогда не входили в Международный патентный союз и не моглизаниматься патентованием и приобретением лицензий. Позднее ступенчатое микропрограммное управление было использовано в машине для инженерных расчетов, сокращенно — МИР-1, созданной вслед за ЭВМ „Промiнь“ (1965 г.).

В 1967 году на выставке в Лондоне, где демонстрировалась МИР-1, она была куплена американской фирмой IBM — крупнейшей в США, являющейся поставщиком почти 80 % вычислительной техники для всего капиталистического мира. Это была первая (и, к сожалению, последняя) покупка советской электронной машины американской кампанией.

Как выяснилось позже, американцы купили машину не столько для того, чтобы считать на ней, сколько для того, чтобы доказать своим конкурентам, запатентовавшим в 1963 году принцип ступенчатого микропрограммирования, что русские давно об этом принципе знали и реализовали в серийно выпускаемой машине. В действительности, мы применили его раньше — в ЭВМ „Промiнь“.

Разработчики ЭВМ МИР-1 получили государственную премию СССР (В.М. Глушков, Ю.В. Благовещенский А.А. Летичевский, В.Д. Лосев, И.Н. Молчанов, С.Б. Погребинский, А.А. Стогний. — Прим. авт.). В 1969 году была принята в производство новая более совершенная ЭВМ МИР-2. Затем была разработана МИР-3. По скорости выполнения аналитических преобразований им не было, конкурентов. МИР-2, например, успешно соревновалась с универсальными ЭВМ обычной структуры, превосходящими ее по номинальному быстродействию и объему памяти в сотни раз. На этой машине впервые в практике отечественного математического машиностроения был реализован диалоговый режим работы, использующий дисплей со световым пером.



ЭВМ МИР-1


Каждая из этих машин была шагом вперед на пути построения разумной машины — нашего стратегического направления в развитии ЭВМ.

Чем же ЭВМ МИР отличались от других? Во-первых, тем, что у них был значительно „поднят“ (т. е. улучшен) машинный язык. Ведь в то время во всем мире господствовала точка зрения, что машинный язык должен быть по возможности минимально прост, а все остальное сделают программы. Над нами даже смеялись, что мы такие машины развиваем. Большинство ученых того времени говорили, что следует вводить автоматизацию программирования, т. е. строить такие программы, которые помогают программисту составлять конкретные программы. У нас этим вопросом занимались, например; Королюк, Ющенко и другие ученые. Они впервые в стране предложили весьма эффективный „адресный язык“ для ЭВМ „Киев“ и осуществили разработку „программирующих программ“ (трансляторов) для других машин. Но я в то время непосредственного участия в этом не принимал.

Проектируя МИРы, мы поставили дерзкую задачу — сделать машинный язык возможно более близким к человеческому (имеется в виду математический, а не разговорный язык, хотя мы делали опыты и по созданию машин с нормальным человеческим языком). И такой язык „Аналитик“ был создан и поддержан оригинальной внутримашинной системой его интерпретации. Машины МИР использовались во всех уголках Советского Союза. Их создание является промежуточным этапом развития работ по искусственному интеллекту, поскольку в них реализован еще довольно примитивный искусственный интеллект; формальные алгебраические преобразования были развиты давно, еще до кибернетики, и поэтому здравый смысл не признает такие преобразования интеллектом. Хотя, конечно, когда машина начинает „щелкать“ интегралы как неопределенные, так и определенные, то это внешне выглядит очень убедительно, потому что далеко не всякий преподаватель мехмата может решать такие интегралы. А машина сама и подстановки находит, и не только табличные легкие, но и очень трудные.



ЭВМ МИР-2


В развитии исследований по интеллектуализации вычислительной техники, проводимых под руководством Глушкова, принимали участие Рабинович, Стогний, Летичевский и др. К приходу Глушкова Рабинович был кандидатом технических наук, за его плечами была специализированная ЭВМ для решения систем алгебраических уравнений (СЭСМ). Вначале он оказался в отделе теории цифровых автоматов, руководимом Глушковым, а через несколько лет сам стал заведующим отделом теории цифровых вычислительных машин. Оба отдела — Глушкова и Рабиновича — стояли у истоков одного из основных направлений научной школы Глушкова в области вычислительной техники — интеллектуализации ЭВМ.

„Когда я с участием С.Д. Михневского сделал на семинаре В.М. Глушкова первый доклад о структурной интерпретации языков высокого уровня, — вспоминает З.Л. Рабинович, — то после него Глушков как-то проникновенно сказал мне, что наконец-то я занялся настоящим делом! Вот об этом-то „настоящем деле“, в котором участвовало много сотрудников, я и хочу теперь рассказать — поскольку оно имело глубокие и далеко идущие последствия.

Главной целью широкого спектра исследований в области архитектур ЭВМ в нашем институте была прежде всего интеллектуализация ЭВМ — проблема, которой, по-видимому, нет предела. На первом этапе стержневым вопросом была схемная реализация в ЭВМ языков высокого уровня, а в более широкой трактовке — усиленная структурная поддержка математического обеспечения машины. Цель — повышение эффективности эксплуатации ЭВМ путем упрощения взаимодействия человека с машиной. Это был новый путь, требовавший теоретического обоснования.

Первая в Союзе публикация на этот счет, открывавшая, собственно, данное направление развития структур и архитектур ЭВМ (по-видимому, одна из первых в мире), появилась в 1966 году (В.М. Глушков, З.Л. Рабинович. О некоторых проблемах развития алгоритмических структур вычислительных машин //Кибернетика на службе коммунизму. — М., 1966).

В то время это были „революционные взгляды“, поэтому признание нового направления в развитии ЭВМ пришло не сразу. Первое „сражение“ за новую идеологию произошло на Международной конференции по развитию ЭВМ с участием представителей Болгарии, Венгрии, Польши, Чехословакии, которая проходила в Киеве в 1962 году. Доклад по этой проблеме должен был делать внезапно заболевший Глушков. Несмотря на температуру около 4 °C, он все же решился на выступление, поскольку придавал конференции большое значение. Плохое самочувствие помешало ему говорить с тем воодушевлением, которое было ему свойственно и как бы экзальтировало аудиторию, даже эмоционально убеждало в истинности высказываемых положений. После доклада посыпались вопросы — один другого „круче“. Известный московский специалист Шура-Бура с сарказмом бросил реплику, что если реализовать то, что предлагает Глушков, то ЭВМ по размерам станет больше здания, где проходит конференция. Лишь в конце страсти успокоились, но оппоненты остались при своем мнении.

Признание важности интеллектуализации ЭВМ пришло в 1963 году на довольно узком симпозиуме, организованном нашим институтом и Ужгородским университетом, в котором участвовали Лебедев, Глушков, Сулим (будущий заместитель министра радиопромышленности, а в то время начальник главного управления вычислительной техники министерства) и др. В основном обсуждались наши предложения по развитию архитектуры ЭВМ. Атмосфера была дружеская, а критика вполне доброжелательная. Присутствовали математики другого „стана“, но, насколько я помню, обсуждение было вполне деловым, хотя и не лишенным эмоций. Лебедеву понравились наши предложения, он отметил совпадение некоторых из них с теми, что применялись в разрабатываемой БЭСМ-6. Одним словом, в Ужгороде наши предложения їыли обсуждены и одобрены, а также высказаны рекомендации по этому направлению развития ЭВМ. „Высокие стороны“ окончательно договорились о том, что Институт точной механики и вычислительной техники АН СССР по-прежнему будет заниматься проблемой создания супер-ЭВМ, а Институт кибернетики АН Украины — малыми и специализированными ЭВМ.

Возвратившись в Киев, Глушков энергично взялся за разработку ЭВМ МИР-1. Он находился в состоянии творческого экстаза и буквально чуть ли не за две недели составил аванпроект, изложив в нем основные структурно-архитектурные контуры машины. В нем содержался ряд оригинальных решений, послуживших основанием для заявок на изобретения.

Тесный союз научных сотрудников института (А.А. Стогний, А.А. Летичев-ский и др.), ученых и инженеров СКВ (Ю.В. Благовещенский, С.Б. Погребин-ский, В.Д. Лосев, А.А. Дородницина, В.П. Клименко, Ю.С. Фищман, A.M. Зинченко, А.Г. Семеновский и др.) привел к блестящим результатам — ЭВМ семейства МИР были быстро разработаны, запущены в серийное производство и получили очень высокую оценку пользователей. Их создание явилось крупным шагом в развитии идеи интеллектуализации малых ЭВМ.

В годы разработки этого семейства состоялась еще одна представительная конференция (Дилижан, Армения), посвященная исключительно развитию архитектур. На ней обсуждались как теоретические, так и конкретные вопросы разработок. Присутствовали в основном единомышленники. Шире прочих были представлены наш институт. Ереванский институт вычислительных машин, Институт точной механики и вычислительной техники АН СССР, Московский энергетический институт и другие организации. В числе участников от нашего института были В.М. Глушков и А.А. Стогний, С.Б. Погребинский, А.А. Лети-чевский, Ю.В. Капитонова, З.Л. Рабинович, от Института точной механики и вычислительной техники АН СССР — B.C. Бурцев, В.А. Мельников, Л.Н. Королев, Н.А. Томилин и др. От нас с докладами по предложению Глушкова выступили я и Погребинский. Врезалась в память реплика В.С.Бурцева во время выступления Погребинского: „Братцы, а почему мы так не делаем?“ Думаю, что на дальнейшее развитие работ в наших организациях, в том числе в Ереванском институте (при создании малых микропрограммных машин с развитой архитектурой), эта конференция повлияла весьма благотворно.

И все же возможности совершенствования машин семейства МИР были, к сожалению, далеко не жчерпаны. Я помню, как относительно недавно, во время моего доклада в Новосибирске, посвященном интеллектуализации ЭВМ, академик Ершов бросил реплику, содержащую упрек в том, что если бы Институт кибернетики АН Украины не прекратил работы по МИРам и продолжалось их развитие и производство, то в Союзе была бы лучшая в мире персональная ЭВМ“.

„Разработка проекта машины МИР-1 отличалась огромным творческим накалом и интенсивным взаимодействием специалистов различного профиля, — вспоминает участник работ А.А. Летичевский. — Помню, как рождался входной язык машины (я в коллективе был „самым языкатым“ и поэтому больше всего занимался разработкой языковых средств различного уровня). После интенсивных мозговых штурмов, вдохновляемых безграничной научной фантазией Виктора Михайловича, принимались очередные решения по структуре языка, которые затем проверялись на примерах конкретных задач. Первоначально язык развивался в направлении алгебраических спецификаций вычислительных схем. Юрий Владимирович Благовещенский предлагал все новые и новые вычислительные методы, а Алла Дородницына записывала соответствующие определения в языке. И каждый раз чего-нибудь недоставало. Например, допустимые схемы рекурсивных определений позволяли записать простую итерацию для решения систем линейных уравнений, но как быть с Зейделевской? Я, как теоретик, черпал идеи из известной в то время книги Петер „Рекурсивные функции“, и вскоре все стандартные типы рекурсий (возвратная, повторная и пр.) были включены в язык. И все же трудности оставались. Переломный момент наступил в момент, когда академик Дородницын посоветовал включить в язык оператор перехода, т. е. сделать шаг по направлению к традиционным языкам типа ФОРТРАН или АЛГОЛ. Мы все время этого остерегались, пытаясь оставаться на уровне математических определений. Но после того как язык был обогащен мощными математическими средствами сделать небольшой шаг назад оказалось совсем не страшно. Этот шаг был сделан, и язык приобрел законченный и совершенный вид. Получился оригинальный язык, органически сочетающий парадигму формульного вычислителя, функциональную и процедурную парадигмы“.



ЭВМ МИР-3


Развитие архитектуры ЭВМ идет особым путем, потому что новые идеи (первоначальный замысел) пока исходят от человека. Система машинного проектирования позволяет лишь уточнять, оптимизировать схемы ЭВМ по тому или иному критерию, чаще всего комбинированному, что вручную не удается даже при хороших архитектурных идеях.

В основу нашей дальнейшей работы по архитектуре машин я положил последовательный отказ от хорошо известных принципов фон Неймана (последовательная структура языка, т. е. выполнение команд одна за другой; командно-адресный принцип, т. е. в команде содержатся адреса операндов, и команды хранятся так же, как и операнды в памяти; максимальная простота системы команд, т. е. максимальная простота машинного языка. Можно говорить и о других принципах, но эти главные). Появление именно таких принципов не удивительно. В эпоху ламповых машин, когда каждый разряд арифметического устройства — это минимум один триод, необходима простая машина с простыми командами.

Однако я уже тогда предвидел развитие микроэлектроники и то, что конструктивные элементы будут изготовляться в едином технологическом процессе и будут стоить очень дешево. Еще тогда я сформулировал такую цель для физиков: композиционное конструирование твердого тела для создания машинной среды. В этом случае принципы фон Неймана не приемлемы. В качестве одного из новых принципов я предложил усложненный машинный язык, потому что компилирующие системы усложнялись и надо было упрощать программирование с двух концов — с точки зрения языков и компиляторов, т. е. приближать машинный язык к входному. Реализовав частично эту идею в ЭВМ серии МИР, мы стали развивать ее дальше в соответствии с принципом постепенного усложнения машинного языка, причем не просто усложнения, а приближения к человеческому языку. Пределом я поставил разговор с машиной на естественном языке (и выдачу заданий).

Для того, чтобы выполнить эту задачу, т. е. вести разговор с машиной на естественном языке, надо, конечно, прежде всего автоматизировать логические рассуждения, что проще всего, поскольку какие-то формализмы уже были известны. Но анализ этих формализмов показал, что классическая математическая логика многого не учитывает. И поэтому была выдвинута задача построения практической математической логики. Она успешно решается. Это стержневая линия. Основная идея состоит в том, что математическое доказательство может строиться как программа, на основе языка. Когда мы ее осуществим, то станем внедрять такой язык в архитектуру машин. Автоматизация доказательства теорем — это моя голубая мечта, она составляет основу в моих размышлениях об архитектуре новых ЭВМ, способных осуществить сложные творческие процессы, в том числе построение дедуктивных теорий.

Именно отсюда вытекают новые идеи построения ЭВМ. И понять, как строить такие машины, может только человек, занимающийся не только машинами, но и искусственным интеллектом. В этом наша сила.

В конце 60-х годов в институте под руководством В.М. Глушкова была начата разработка ЭВМ „Украина“. Главным конструктором был назначен З.Л. Рабинович, заместителями — А.А. Стогний и И.Н. Молчанов. Это был следующий шаг в отступлении от неймановских принципов в развитии интеллектуализации ЭВМ, связанный на этот раз с разработкой высокопроизводительной универсальной ЭВМ.

После завершения эскизного проекта Министерство радиопромышленности предложило провести научно-технический совет с докладом по проекту новой ЭВМ. Председательствовал на совете заместитель министра М.К. Сулим. Присутствовали главные конструкторы средств вычислительной техники, директора институтов Министерства радиопромышленности, представители военных и промышленных структур и др. Среди участников были академики Глушков (руководитель докладываемой работы), Дородницын, Лебедев. Равнодушных не было. Были сторонники работы и ее противники, точнее — скептики. Одним словом, интерес был огромный. По поручению Виктора Михайловича доклад сделал Рабинович. Он вспоминает: „После доклада состоялась жаркая дискуссия, страсти разгорелись. Был такой момент, когда три академика вскочили одновременно и бросали свои аргументы в зал. Я отвечал на вопросы слишком осторожно и спокойно, чем заслужил упрек от Виктора Михайловича. Главным оппонентом оказался Лебедев — это же была его родная сфера, а мы вторгались в чужую вотчину. В ходе дискуссии было видно, как постепенно изменяется настроение зала по мере осознания сущности работы — от скепсиса к активному одобрению. Решение совета оказалось положительным. Глушков, получив его через несколько дней, даже удивился, — у него создалось впечатление об отрицательном отношении совета к нашей работе, хотя Лебедев, взяв его и меня в свою машину после заседания, успокоил нас. Более того, он даже советовал, как проще сделать макет машины. Я говорю об этом, чтобы развеять сомнения в положительном отношении Лебедева к „интеллектуальному“ развитию ЭВМ. В своем отзыве на мой „докторский“ цикл работ, представленных на защиту, Лебедев именно эту часть выделил как наиболее важную, хотя „удельный вес“ ее в докладе был относительно небольшим. Уже после совета был выполнен технический проект машины „Украина“, но она не была построена. Одной из причин, имевшей даже психологический характер, было то, что мы боялись скомпрометировать идею из-за отсутствия в то время необходимой для такой машины элементной базы. Позже в одном из американских журналов я обнаружил прогнозную таблицу, в которой были указаны наиболее важные направления развития архитектуры и структур ЭВМ и предполагаемый год реализации. В строке о внедрении языков высокого уровня в, структуры ЭВМ (не помню формулировки, но сущность была именно такова) вместо даты реализации был вопрос, а в комментариях отмечено, что для реализации этого очень сложного направления нет еще соответствующей элементно-технологической базы (это у них-то нет!), и когда она будет, неизвестно“.

Разработка проекта машины „Украина“ явилась важной вехой в развитии научной школы В.М. Глушкова в области вычислительной техники. Идеи, заложенные в проекте, предвосхитили многие идеи, использованные в американских универсальных ЭВМ 70-х годов.

По материалам разработки была подготовлена монография „Вычислительная машина с развитыми системами интерпретации“, изданная в 1970 году, т. е. примерно всего через два года после окончания работ по „Украине“, авторами которой являются В.М. Глушков, А.А. Барабанов, С.Д. Калиниченко, С.Д. Михновский, З.Л. Рабинович. В книге по истории мировой вычислительной техники (подготовленной Институтом истории техники АН СССР) она была упомянута как теоретическое обоснование развития ЭВМ в направлении реализации языков высокого уровня. В 1987 году, когда уже не стало Виктора Михайловича, в Министерстве радиопромышленности состоялось представительное совещание по вопросу дальнейшего развития вычислительной техники. От нашего института на нем присутствовал З.Л.Рабинович. В конце, когда совещание практически завершалось, совершенно неожиданно выступил академик B.C. Семенихин и сказал, что тот путь, на который сейчас все становятся, был предложен Украинской академией наук еще 15 лет назад. Раздались возгласы: „Институт кибернетики! Глушков!“ Затем один за другим выступили известные ученые тех лет — Б.А. Бабаян, Н.Я. Матюхин, М.К. Сулим. Звучала искренняя признательность В.М. Глушкову и Институту кибернетики АН Украины за большой вклад в развитие отечественной вычислительной техники.

Кроме усложнения машинного языка мы стремились перейти от последовательного принципа исполнения команд, предложенного Нейманом, к мультикомандному. Пришлось много потрудиться, пока не пришла в голову идея макроконвейера, и удалось, если не для каждого арифметического устройства, то для всей системы в целом сделать мультикомандную машину со многими потоками команд и данных.

Суть предложенного мной принципа макроконвейерной обработки данных заключается в том, что каждому отдельному процессору на очередном шаге вычислений дается такое задание, которое позволяет ему длительное время работать автономно без взаимодействия с другими процессорами.

Еще в 1959 году на Всесоюзной конференции по вычислительной технике в Киеве В.М. Глушков высказал идею мозгоподобных структур, которые станут реальностью, когда конструктор сможет объединить в единую систему не тысячи, а миллиарды элементов практически без каких-либо ограничений на число соединений между этими элементами. В таких структурах может быть осуществлено слияние памяти с обработкой данных, т. е. такое функционирование системы, при котором данные обрабатываются по всей памяти с максимально возможной степенью распараллеливания всех операций.

В 1974 году на конгрессе IFIP Глушков выступил с докладом о рекурсивной ЭВМ, основанной на новых принципах организации вычислительных систем (соавторы В.А. Мясников, И.Б. Игнатьев, В.А. Торгашев). Он высказал мнение о том, что только разработка принципиально новой ненеймановской архитектуры вычислительных систем, базирующейся на современном уровне развития технологии, позволит решить проблему построения супер-ЭВМ с неограниченным ростом производительности при наращивании аппаратных средств. Дальнейшие исследования показали, что полная и бескомпромиссная реализация принципов построения рекурсивных ЭВМ и мозгоподобных структур при имеющемся уровне электронной технологии пока преждевременна. „Необходимо было найти компромиссные решения, определяющие переходные этапы к мозгоподобным структурам будущего путем разумного отступления от принципов фон Неймана“ (из доклада В.М. Глушкова на конференции в Новосибирске в 1979 году). Такие решения были найдены Глушковым и положены в основу оригинальной структуры высокопроизводительной ЭВМ, названной им макроконвейером.

Идея макроконвейера так увлекла ученого, что он работал над ней даже находясь в Президиуме АН Украины, где выполнял обязанности вице-президента. Как-то раз, придя к нему в кабинет, я застал его в сильном возбуждении. Он сразу начал рассказывать про только что появившийся у него вариант структуры макроконвейерной ЭВМ. Этим я хочу подчеркнуть, что основополагающие принципы макроконвейерной ЭВМ исходили именно от него.

Глушков привлек к новой работе, кроме своего, отделы Молчанова, Летичев-ского, Михалевича и др., крупные силы СКВ математических машин и систем. Сам постоянно проводил научные семинары с обсуждением основных вопросов архитектуры и программного обеспечения, добился выпуска постановлений, обязывавших осуществить снабжение института необходимыми техническими средствами, финансированием и обеспечить промышленный выпуск новой ЭВМ, что было далеко не так просто. Главным конструктором макропроцессорной ЭВМ был назначен С.Б. Погребинский.

В 1981 году Институт кибернетики АН Украины посетил известный физик-атомщик академик Ю.Б. Харитон, которого заинтересовала необычная макро-конвейерная машина, позволяющая увеличить во много раз скорость вычислений, а следовательно, сократить сроки важнейших в то время работ. В.М.Глушков понимал важность такого визита для дальнейшей судьбы макроконвейерной ЭВМ и института в целом. Он был уже очень болен, с трудом говорил, речь прерывалась кашлем. И тем не менее он сам принял академика, заразив его своим энтузиазмом, верой в то, что мощная отечественная супер-ЭВМ обязательно появится и поможет физикам.

Глушков не смог увидеть созданные по его идеям макроконвейерные ЭВМ ЕС-2701 и ЕС-1766, не имеющие аналогов в мировой практике (по оценке Государственной комиссии, принимавшей работы). В тот период (начало 80-х годов) это были самые мощные в бывшем Советском Союзе вычислительные системы. Производительность ЕС-1766 при использовании полного комплекта процессоров (256 устройств) оценивалась в полмиллиарда операций в секунду! ЕС-2701 и ЕС-1766 были переданы на завод ВЭМ (г. Пенза) в серийное производство в 1984-м и 1987 годах, соответственно. К сожалению, машины, столь мощные, соперничающие с лучшими американскими и столь нужные науке и технике, были выпущены на заводе лишь малой серией.

Талант и труд выдающегося ученого, многих сотен работавших с ним людей, большие затраты материальных и финансовых средств остались неиспользованными…

Большую роль в быстрой реализации идей Глушкова в области вычислительной техники сыграли кадры специалистов, подготовленных Лебедевым, и в первую очередь Погребинский, участник разработки МЭСМ, отладки БЭСМ, создания ЭВМ „Киев“. Путь его в науку был обычным для того времени: война, ранения, демобилизация, а затем учеба в Киевском политехническом институте. В 1948 году начал работать в лаборатории Лебедева. Ему была поручена разработка элементов, макетирование и отладка главной части МЭСМ — арифметического устройства, с чем он отлично справился. Таким неординарным было второе „боевое крещение“ молодого специалиста, на этот раз не на поле боя, а в науке. Став научным руководителем работ на завершающем этапе конструирования ЭВМ „Киев“, Глушков сразу обратил внимание на молодого, активного, весьма организованного и знающего себе цену инженера.

Когда работы по ЭВМ „Киев“ закончились, он назначил Погребинского главным конструктором ЭВМ „Промшь“ (а затем и МИРов). Вряд ли Глушков ожидал, что его идея личной машины для инженера (сейчас ее назвали бы персональной) будет реализована в ЭВМ „Промшь“ всего за восемь месяцев!

Будучи главным конструктором макроконвейерной ЭВМ, Погребинский отлично справился и с этой, вероятно, самой сложной в его жизни работой.

Быстродействие и надежность — главные параметры ЭВМ — в значительной степени определяются элементной базой: десятками и сотнями тысяч элементарных электронных схем, из которых строится ЭВМ. В разработку элементной базы первых ЭВМ („Днепр“, МИР и др.) основной вклад внес С.С. Забара. Он появился в бывшей лаборатории Лебедева в 1956 году еще до прихода Глушкова и попал в группу, эксплуатировавшую СЭСМ. Машина работала очень ненадежно.

Намучавшись с ней, он решился на отчаянный поступок. „Когда все ушли в отпуск и среди двух оставшихся я оказался старшим, — вспоминает он, — я срезал весь старый монтаж, разработал новые элементы, но смонтировать, конечно, не успел. То-то были гром и молнии, когда вернулся мой руководитель Рабинович! Но пути были отрезаны, нужно было идти напролом. И затея удалась! Это была первая, маленькая, но очень приятная победа!“.

Постепенно С.С.Забара стал, как тогда говорили, „элементщиком“, т. е. разработчиком элементной базы машин. Был главным конструктором элементной базы ЭВМ „Днепр“, „Днепр-2“, ЭВМ семейства МИР, „Искра“ и др. Руководил работой по созданию системы потенциальных элементов (МИР-10), сменивших потенциально-импульсные. На элементах МИР-10 создавались все машины второго поколения, выпускаемые Министерством приборостроения СССР. (В этой работе активно участвовал А.Г. Кухарчук, разработавший базовые методы проектирования цифровых устройств на потенциальных элементах).

Кроме „Днепров“ и семейства МИР в Институте кибернетики АН Украины и СКВ института в 60-х и 70-х годах был разработан и передан промышленности целый ряд мини-ЭВМ, специализированных ЭВМ и программируемых клавишных ЭВМ: СОУ-1, „Нева“, „Искра-125“, „Мр1я“, „Чайка“, „Москва“, „Скорпион“, „Ромб“, „Орион“, „Экспресс“, „Пирс“, ЭВМ для спектрального анализа и др. (А.В. Палагин, А.Г. Кухарчук, Г.И. Корниенко).

Совместно с Киевским ПО им. С.П. Королева был создан и выпускался комплекс микропроцессорных средств „Нейрон“ и системы отладки СО-01 — СО-04 (Б.Н. Малиновский, А.В. Палагин, В.И. Сигалов). Сотрудники института приняли участие в проектировании первой отечественной микро-ЭВМ „Электроника-С5“, созданной в Ленинградском НПО „Светлана“ (А.В. Палагин, В.А. Иванов).

Современные ЭВМ невозможно проектировать без систем автоматизации проектно-конструкторских работ. На основе теоретических работ Глушкова в институте был развернут широкий фронт работ и создан ряд уникальных систем „ПРОЕКТ“ („ПРОЕКТ-1“, „ПРОЕКТ-ЕС“, „ПРОЕКТ-МИМ“, „ПРОЕКТ-МВК“) для автоматизированного проектирования ЭВМ вместе с математическим обеспечением. Первоначально они реализовывались на ЭВМ „Киев“, затем М-20, М-220 и БЭСМ-6 (с общим объемом в 2 млн. машинных команд), а со временем переведены на ЕС ЭВМ. Система „ПРОЕКТ-1“, реализованная в М-220 и БЭСМ-6, представляла собой распределенный специализированный программно-технический комплекс со своей операционной системой и специализированной системой программирования. В ней впервые в мире был автоматизирован (причем с оптимизацией) этап алгоритмического проектирования (В.М. Глушков, А.А. Летичевский, Ю.В. Капитонова). В рамках этих систем была разработана новая технология проектирования сложных программ — метод формализованных технических заданий (А.А. Летичевский, Ю.В. Капитонова). Системы „ПРОЕКТ“ разрабатывались как экспериментальные, на них отрабатывались реальные методы и методики проектирования схемных и программных компонентов ЭВМ. Эти методы и методики впоследствии были приняты в десятках организаций, разрабатывающих вычислительную технику. Заказчиком выступало Министерство радиопромышленности (ЦКБ „Алмаз“ и НИЦЭВТ). Разработанные системы стали прообразом реальных технологических линий выпуска документации для производства микросхем ЭВМ во многих организациях бывшего Советского Союза.



В.М. Глушков и С.Б. Погребинский


С системой „ПРОЕКТ-1“ тесно связана система автоматизации проектирования и изготовления БИС с помощью элионной технологии. В отделе, руководимом В.П. Деркачем (одним из первых аспирантов В.М. Глушкова), были созданы установки „Киев-67“ и „Киев-70“, управляющие электронным лучом при обработке с его помощью различного типа подложек. Необходимо заметить, что показатели этих установок давали рекордные параметры в микроэлеронике на то время.

Системы автоматизации проектирования „ПРОЕКТ“ имели коммуникационный интерфейс с „Киев-67“ и „Киев-70“, что позволяло выполнять сложные программы управления электронным лучом как при напылении, так и при графической обработке подложек.

Работы Глушкова, Деркача и Капитоновой по автоматизации проектирования ЭВМ были удостоены в 1977 году Государственной премии СССР.

Проблема автоматизации программирования также входила в круг основных интересов В.М.Глушкова. В работах этого направления он исходил из дальней цели полной автоматизации процесса разработки программ и ведения вычислений. Эта цель была сформулирована уже в 1957 году в статье Глушкова „Об одном методе автоматизации программирования“ (Проблемы кибернетики. — 1959, № 2), где предлагались первые реальные шаги для ее достижения. Работа заканчивалась словами: „В случае реализации метода во всей его полноте машине будет достаточно „показать“ бумагу с напечатанным на ней заданием (на привычном математическом языке. — Прим. автора), чтобы машина без дальнейшего вмешательства человека начала решать задачу и выдала через некоторое время ответ“. Метод специализированных программирующих программ, предложенный и развитый там же, в настоящее время реализуется в методологии построения интеллектуальных прикладных пакетов программ. В этой работе проявилась важная методологическая идея о правильном (сбалансированном) сочетании универсальных и специализированных средств при создании кибернетических систем, которая широко использовалась в дальнейшем и в других областях (архитектура ЭВМ, искусственный интеллект, системы управления).

Пути совершенствования технологии разработки программ В.М. Глушков видел в развитии алгебры алгоритмических языков, т. е. техники эквивалентных преобразований выражений в этих языках. В эту проблему он вкладывал общематематический и даже философский смысл, рассматривая создание алгебры языка конкретной области знаний как необходимый этап ее математизации. Сопоставляя численные и аналитические методы решения задач прикладной математики, Глушков утверждал, что развитие общих алгоритмических языков и алгебры таких языков приведет к тому, что выражения в этих языках



В.М. Глушков и М.А. Лаврентьев


(сегодняшние программы для ЭВМ) станут столь же привычными, понятными и удобными, какими сегодня являются аналитические вьгражения. При- этом фактически исчезнет разница между аналитическими и общими алгоритмическими методами и мир компьютерных моделей станет основным источником развития новой современной математики, как это и происходит сейчас. Поэтому, обсуждая созданную им алгебру алгоритмов, он говорил об этапах развития формульного аппарата математики от алгебраической символики Виета и символики дифференциально-интегрального исчисления Лейбница и Ньютона до современных алгоритмических языков, для которых необходимо создавать соответствующие исчисления и алгебру.

Опираясь на отечественные работы по теории и практике программирования в Москве, Новосибирске, Дубне, Ленинграде и других городах, Глушков в начале 70-х годов сформировал в стране программу работ по технологии программирования и средствам ее автоматизации. Ее реализация была задумана и организована им широким фронтом: от фундаментальных исследований и организационных мероприятий (конференций, ежегодных школ-семинаров, рабочих групп, постановлений директивных органов и пр.) до изготовления и внедрения в народное хозяйство конкретных автоматизированных систем производства программ и технологических комплексов программиста. В это время им был выполнен большой цикл работ по созданию в стране первой отечественной технологии программирования с развитыми средствами автоматизации на всех этапах изготовления программных систем. Средства автоматизации работ по этой технологии — технологические комплексы РТК — были изготовлены для всех основных машин — ЕС ЭВМ, СМ ЭВМ, БЭСМ-6, микро-ЭВМ типа „Электроника“ и получили широкое внедрение. Большую роль в успешном выполнении этого цикла работ сыграл И.В. Вельбицкий.

На пути к роботам

Искусственные зрение и слух — важная часть работ в области создания искусственного интеллекта. Здесь главным, конечно, является зрение, поскольку наибольшее количество информации человек получает благодаря ему. Для этого я пригласил В.А. Ковалевского из Харькова, который и организовал работу по распознаванию образов. Первым результатом его работы стал автомат для чтения машинописных букв и цифр. Он был выпущен малой серией (пять или восемь штук) из-за дороговизны, с перфокартами ему было конкурировать трудно. Затем Т.К. Винцюк занялся распознаванием речи, которым мы прикрыли направление по созданию сенсорной части роботов.

С самого начала я сформулировал задачу и по автоматизации двигательной (моторной) функции роботов. Мной была поставлена задача создать автоматическую руку на тележке, которая передвигалась вдоль щита управления любым объектом и переключала бы тумблеры, рубильники, поворачивала ручки и т. д., одновременно к ней добавлялось примитивное зрение, способное воспринимать только положение стрелки приборов или деления шкалы. Но, к сожалению, я не смог подыскать человека, который любил бы работать с механикой, руками. А эту задачу я поставил еще в 1959 году, когда о роботах никто не заикался. Если бы у. нас были хорошие мастерские, то мы могли бы в 1963 году первыми в мире иметь механическую руку. К сожалению, не все удается сделать.

Синтез всех этих направлений — в роботах-манипуляторах с рукой, зрением и искусственной речью.

Одновременно мы начали работы по распознаванию смысла фраз на русском языке, т. е. в области семантических сетей, как теперь это называется. Этим занимался А.А. Стогний и частично А.А. Летичевский, они добились хороших результатов. Впрочем, алгоритмы делал я, а Стогний подготовил хорошие программы. По потоку предложений на входе этот алгоритм строил семантическую сеть, т. е. определял, какие слова с какими корреспондируются. Например, предложение „Стул стоит на потолке“ хоть и правильно грамматически, но семантически неверно, и т. д. Были сделаны зачатки картины мира, причем придумано экономное кодирование; затем Стогний переключился на распознавание дискретных образов, тематику Ю.И. Журавлева, да и я оставил это дело и у нас оно захирело. Надо было его с машинным переводом связать, но опять не хватило людей, а я не мог заниматься лишь семантической алгоритмикой. И все-таки, когда я сделал в 1961 году в Мюнхене на конгрессе IFIP доклад на эту тему, это стало сенсацией, — у американцев ничего подобного в то время не было. Тогда же меня избрали в программный комитет Международной федерации по обработке информации.

„ЭВМ „Киев“ стала первой в Европе системой цифровой обработки изображений и моделирования интеллектуальных процессов, — дополняет Глушкова Г.Л. Гиммельфарб, один из ветеранов института. — К ней были подключены два оригинальных периферийных устройства, которые позволили моделировать на ЭВМ простейшие алгоритмы обучения распознаванию образов и обучения целенаправленному поведению: устройство для ввода изображений с бумажного носителя или фотопленки и устройство вывода изображений из ЭВМ. (Оба устройства разработал В.И. Рыбак.) В те годы первые устройства вывода изображений из ЭВМ (прообразы сегодняшних дисплеев) имелись только в США. Устройств, аналогичных киевскому, по всей видимости, за рубежом тогда еще не было. На ЭВМ „Киев“ под руководством Глушкова в конце 50-х — начале 60-х годов была выполнена серия работ по искусственному интеллекту, в частности обучению распознаванию простых геометрических фигур (В.М. Глушков, В.А. Ковалевский, В.И. Рыбак), моделированию читающих автоматов для рукописных и машинописных знаков (В.А. Ковалевский, А.Г. Семеновский, В.К. Елисеев), отслеживанию движения объектов по серии изображений, или кинограмме (В.И. Рыбак), моделированию поведения коллектива автоматов в процессе эволюции (А.А. Дородницина, А.А. Летичевский), автоматическому синтезу функциональных схем ЭВМ (Ю.В. Капитонова) и др. Таким образом, В.М. Глушков обратился к теории и практике моделирования интеллектуальной деятельности в первые годы становления вычислительной техники, когда многие воспринимали ЭВМ просто как „большой арифмометр“. Большой интерес Глушков проявил к автоматическому распознаванию зрительных образов: работы по автоматическому чтению рукописных и печатных знаков были начаты под его руководством уже в 1959–1961 годы, а на протяжении первой половины 60-х годов была развита корреляционная теория распознавания машинописных знаков и строк текста (В.А. Ковалевский, М.И. Шлезингер), теория оптимального конструирования эталонов распознаваемых символов (М.И. Шлезингер), были созданы последовательно несколько макетов оптических читающих автоматов, основанные на принципах оптической корреляции („ОКА“ и „ЭОК-10“, В.К. Елисеев) и электронной корреляции („ЧАРС“, В.А. Ковалевский, А.Г. Семеновский).

В дальнейшем устройства ввода-вывода изображений, использованные для ЭВМ „Киев“, были модернизированы и перенесены на новую ЭВМ БЭСМ-6. С их помощью были выполнены многочисленные работы по цифровому анализу снимков реальных объектов, в частности по обнаружению и отслеживанию следов физических частиц в пузырьковых камерах (М.И. Шлезингер), обнаружению, распознаванию и отслеживанию движения различных транспортных средств (В.И. Рыбак), распознаванию машинописных знаков (В.А. Ковалевский) и др.

Опыт, полученный при создании и использовании устройств ввода-вывода изображений, позволил разработать первый в СССР стенд моделирования интеллектуальных роботов типа глаз-рука (В.И. Рыбак, Г.Л. Гиммельфарб, В.Б. Марченко и др.). В состав стенда вошли ЭВМ БЭСМ-6, связанная с ней телевизионная система ввода изображений в ЭВМ и электромеханический манипулятор с шестью степенями подвижности, подсоединенный к ЭВМ БЭСМ-6 через управляющую мини-ЭВМ М-6000. В.М. Глущков проявил большой интерес к этим работам, поскольку считал робототехнику одним из важнейших направлений практического использования методов и средств искусственного интеллекта. На стенде были впервые в СССР выполнены работы по автоматическому описанию пространственных сцен, составленных из простых по форме объектов, и управлению манипулятором на основе полученного описания (70-е годы)“.

Добавим, что в отделе Н.М. Амосова в эти же годы был проведен широкий комплекс исследований в области искусственного интеллекта: был разработан ряд транспортных роботов (ТАИР и др.), осуществлено моделирование ряда мыслительных и общественных процессов (A.M. Касаткин, Л.М. Касаткина, Д.Г. Галенко и др.).

В.М. Глушков не случайно упоминает Т.К. Винцюка и его работы по распознаванию речи. Еще при жизни ученого Винцюком был разработан ряд весьма совершенных устройств распознавания и синтеза речи. Поддержка этих работ со стороны В.М. Глушкова привела к быстрому развитию в институте одного из важных направлений искусственного интеллекта.

Будущее экспериментальной науки

„Вряд ли можно сомневаться, что в будущем все более и более значительная часть закономерностей окружающего нас мира будет познаваться и использоваться автоматическими помощниками человека. Но столь же несомненно и то, что все наиболее важное в процессах мышления и познания всегда будет уделом человека. Справедливость этого вывода обусловлена исторически.



„Рука“ робота, управляемая ЭВМ

…Человечество не представляет собой простую сумму людей. Интеллектуальная и физическая мощь человечества определяется не только суммой человеческих мускулов и мозга, но и всеми созданными им материальными и духовными ценностями. В этом смысле никакая машина и никакая совокупность машин, являясь в конечном счете продуктом коллективной деятельности людей, не могут быть „умнее“ человечества в целом, ибо при таком сравнении на одну чашу весов кладется машина, а на другую — все человечество вместе с созданной им техникой, включающей, разумеется, и рассматриваемую машину.

Следует отметить также, что человеку исторически всегда будет принадлежать окончательная оценка интеллектуальных, равно как и материальных ценностей, в том числе и тех ценностей, которые создаются машинами, так что и в этом смысле машина никогда не сможет превзойти человека.

Таким образом, можно сделать вывод, что в чисто информационном плане кибернетические машины не только могут, но и обязательно должны превзойти человека, а в ряде пока еще относительно узких областей они делают это уже сегодня. Но в плане социально-историческом эти машины есть и всегда останутся не более чем помощниками и орудиями человека“. (В.М. Глушков. Мышление и кибернетика//Вопр. философии. — 1963. № 1).

Автоматизация научных исследований начиналась с автоматизации измерений и обработки полученной информации. Это мы делали еще в начале 60-х годок на расстоянии обрабатывали данные, поступавшие из Атлантического океана. Наличие управляющей машины „Днепр“ с устройством связи с объектом УСО позволило нам раньше американцев осуществить автоматизацию эксперимента в Академии наук Украины. Американцы использовали для этой цели КАМАК — более совершенные технические средства, созданные в 1967 году, тогда как УСО „Днепра“ было разработано в 1961 году. Председателем Совета по автоматизации научных исследований, организованного в 1972 году при Президиуме АН Украины, был назначен Б.Н. Малиновский. Я как вице-президент курировал этот совет, а также совет по вычислительной технике, руководимый А.А. Стогнием, и совет по АСУ президиума, возглавляемый B.C. Михалевичем.

Было решено силами академических институтов разработать автоматизированные проблемно-ориентированные лаборатории АПОЛ, включающие комплекс измерительных средств, ЭВМ и программы обработки измерений. Сейчас один завод выпускает рентгеновские аппараты, другой — спектроанализаторы, третий — вычислительную машину, четвертый — КАМАК и т. п. Это, конечно, не индустриальный подход, и такими темпами мы науку не автоматизируем до конца XXI столетия. Мы наметили пять-шесть АПОЛ, готовим необходимую техническую документацию и решаем вопрос о серийном производстве. В частности речь идет о лаборатории для рентгеноструктурного анализа, лаборатории масс-спектрографий и еще о целом ряде лабораторий, которые используются в химии, физике и биологии. Есть договоренность с заводом „Точэлектроприбор“ что они возьмут на себя выпуск таких лабораторий. Тогда Академия наук, заказав их, будет делать только шеф-монтаж. Конечно, для какого-нибудь уникального эксперимента установку придется собрать самим ученым. Но это должно быть исключением, а не правилом. А правилом должно быть осуществление промышленностью шеф-монтажа. Малиновского это сразу увлекло, и он включился в полную силу, а работать он умеет, надо отдать ему должное.

В программно-технических комплексах и проблемных лабораториях должны занять и занимают свое место микрокомпьютеры. — Часть обработки данных эксперимента должна производиться на месте с помощью встроенного в прибор микрокомпьютера, остальная — на миникомпьютере, и лишь в случае необходимости можно выходить на большой компьютер. Например, для обработки результатов сложных ядерных экспериментов мы подключаем машину БЭСМ-6 (или ЕС-1060) на нашем вычислительном центре через радиоканал шириной 96 кГц, а рядом с экспериментальной установкой находится миникомпьютер, обрабатывающий результаты экспериментов.

Большинство экспериментов не ограничивается сбором и обработкой данных. Наиболее трудной частью является настройка экспериментальной установки. Например, для термоядерного лазерного реактора, который разрабатывает академик Н.Г. Басов, результаты эксперимента обрабатываются на ЭВМ за сутки, а на настройку установки тратится полгода, поскольку она должна быть очень точной. Поэтому важно решить и такую задачу, как компьютерная настройка приборов. Для этого следует применять роботы, которые также должны входить в программно-технический комплекс. Потому что, когда делается рентге-ноструктурный анализ кристалла в геохимии, то кристалл следует поворачивать, изменять его положение по отношению к пучку рентгеновского излучения, перемещать и т. п. Это все пока довольно долго делает экспериментатор. А в будущем программно-техническом комплексе такие операции должны выполняться автоматически. В противном случае, если обработка результатов занимает половину времени, то ни при какой автоматизации мы не можем ускорить эксперимент больше чем вдвое. К сожалению, многие этого не понимают.

Не понимают, как всегда, потому, что американцы до этого только-только доходят. Они начнут понимать через пять-восемь лет после того, как это появится в США, такой у них стиль работы.

Усилиями наших инженеров в Институте проблем прочности АН Украины автоматизированы испытания на механическую усталость: здесь, по-видимому, будет создана первая проблемно-ориентированная лаборатория для многих механических испытаний. В Институте геологии и геофизики, а также в Институте проблем онкологии АН Украины мы также сделали ряд работ.

С автоматизацией физических исследований тесно связана автоматизация испытаний сложных промышленных объектов. Этим занимаются В.И. Скурихин и А.Г. Корниенко. Корниенко делает работу для флота, а Скурихин, А.А. Морозов и П.М. Сиверский — для авиации. Когда президент АН СССР А.П. Александров наши результаты увидел, он вначале не поверил. Пришлось показать систему, разработанную Корниенко, установленную на одном из кораблей и имеющую 1200 каналов съема информации.

В подготовленной всесоюзной целевой программе по автоматизации научных исследований, испытаний сложных объектов и автоматизации проектно-конструкторских работ наш институт официально намечается головным. Постановление еще не было, когда я лег в больницу. (Позднее оно вышло. — Прим. авт.) Есть еще одно направление в этой работе, смыкающееся с роботами. Сейчас сборка и укрепление датчиков делаются вручную. Нужен еще такой микроробот, который мог бы все это делать. Такая задача поставлена мной на будущее. Здесь неограниченный простор для исследований, потому что в качестве конечной цели видится автоматизированная система развития науки и техники в целом, когда ЭВМ сами делают эксперименты, настраивают экспериментальную установку, могут спроектировать новую, получают результаты, обрабатывают их, строят теории, проверяют правильность старых теорий и в случае необходимости выходят на построение новых.

В последующем мыслится разработка алгоритмов дедуктивных построений, чтобы машина не только обрабатывала результаты, но и проверяла гипотезы и строила на основе этого теории, т. е. выдавала готовую печатную продукцию сначала в диалоговом режиме, а потом и самостоятельно. Такова дальнейшая программа работ в области автоматизации научных исследований.

И, наконец, системы автоматизации проектирования (САПР). Мы вычленили отдельно задачу автоматизации проектирования ЭВМ, потому что это полностью наша задача. А в остальном проектировании — в строительстве, машиностроении и т. д., алгоритмы делаем не мы, а соответствующие институты, а мы создаем программно-технические комплексы. Мы сделали две такие системы: одну для строителей в Киеве в Институте экспериментального зонального проектирования, другую (закрытую) в Ленинграде. Система автоматизации проектирования строительных работ получилась хорошая: изготавливаются полностью автоматически чертежи, проектная и сметная документация и пр. Этим занимаются Скурихин и Морозов. Эти и другие работы привели к появлению новых направлений — сети ЭВМ и банки данных. Сетями у нас занимаются А.Н. Никулин и А.И. Никитин, а банками данных — Ф.И. Андон и А.А. Стогний.

Что касается сетей, то мы первыми в мире высказали эту идею, первыми осуществили передачу информации для ЭВМ на большие расстояния, и если не сеть, то, во всяком случае, удаленные терминалы сделали раньше всех (при „океанском“ эксперименте, когда ЭВМ „Киев“ обрабатывала информацию, полученную с научно-исследовательского судна).

И мы же сделали первый в мире эскизный проект сети ЭВМ — Единой Государственной сети ВЦ (ЕГС ВЦ), который в полной мере в настоящий момент не реализован еще нигде. Этот проект был сделан мной совместно с Н.Н. Федоренко в 1962–1964 годах по указанию лично председателя Совета Министров СССР Косыгина и был направлен в правительство. Создание такой сети позволяет собирать и оптимальным образом использовать экономическую, научно-техническую и любую другую информацию, а также обмениваться ею в интересах потребителей, что очень важно в наше время перехода к информационному обществу.

Пионеры компьютеризации

Следующее направление, которое также возникло не сразу, хотя и зарождалось давно, — это разработка теории систем управления экономическими объектами (предприятиями, отраслями промышленности), а также автоматических систем для управления различными техническими средствами.

Работы по управлению экономикой развернулись начиная с 1962 года с создания эскизного проекта общегосударственной сети вычислительных центров, а по конкретным автоматизированным системам управления производством (АСУ) — начиная с 1963–1964 годов. Тогда мы стали продумывать „Львовскую систему“ АСУ с крупносерийным характером производства на телевизионном заводе во Львове (теперь — ассоциация „Электрон“. — Прим. авт.), а разрабатывать ее стали начиная с 1965 года, совместно с заводом.

На это дело были ориентированы Скурихин с Морозовым, они являются руководителями больших направлений в Институте кибернетики и в нашем СКВ математических машин и систем. Участвовали в этой работе В.В. Шкурба, Т.П. Подчасова и др. В 1970 году, когда система уже успешно эксплуатировалась, ее создатели получили Госпремию Украины (В.М. Глушков, В.И. Скурихин, А.А. Морозов, Т.П. Подчасова, В.К. Кузнецов, В.В. Шкурба и три специалиста от завода. — Прим. авт.).

За этими несколькими фразами, сказанными В.М. Глушковым по поводу „Львовской системы“ — первой АСУ в бывшем Советском Союзе, стоит колоссальный труд многих сотрудников Института кибернетики АН Украины и СКВ Львовского телевизионного завода „Электрон“.

Летом 1965 года В.М. Глушков поехал во Львов и выступил на конференции, проводимой Львовским совнархозом. С воодушевлением говорил, что надо переходить к автоматизированным системам управления предприятиями, рассказал, что это такое. Присутствовавший на конференции директор телевизионного завода Степан Остапович Петровский предложил Глушкову создать систему управления производством на своем заводе, обещал максимальное содействие. Ученый „загорелся“ появившейся возможностью — в то время подобных систем еще нигде не было. Во Львов был послан Скурихин с командой в пятнадцать человек. За два года система была создана. Скурихин и его ближайшие помощники — А.А. Морозов, Т.П. Подчасова, В.В. Шкурба и др. — все это время жили практически во Львове, работали по двенадцать и более часов в сутки, без выходных. Рассказывая об этих памятных днях, Скурихин вспомнил, как он встретил новый 1966 год: после напряженнейшего рабочего дня не пошел в гостиницу, а устроился спать на своем рабочем столе, да так и проспал всю новогоднюю ночь.

Морозов, по его выражению, отдал „Львовской системе“ десять лет своей жизни. Ему пришлось „доводить“ и развивать ее в последующие годы. Это была суровая, но и очень полезная школа для молодого специалиста.

Направление, которое мы избрали после создания „Львовской системы“, заключалось в том, чтобы создать не индивидуальную, а типовую систему для машине- и приборостроительных предприятий с тем, чтобы можно было реализовать индустриальные методы внедрения. А для этого, конечно, требовалось провести гораздо большую научно-исследовательскую работу, чем для индивидуальной системы. Это примерно в 2,5–3 раза больше работы на начальной стадии разработки, потому что в состав алгоритмов и программного обеспечения приходилось включать не только те алгоритмы, которые встречаются на Львовском заводе, но и те, которые могут быть применены на родственных заводах. Следовательно, надо было создать функциональную избыточность системы с тем, чтобы потом при привязке, наладке, шеф-монтаже и пуске системы можно было бы просто выбирать из наличного запаса то, что надо запускать на данном предприятии. И надо было, конечно, максимально использовать программы, которые пользуются табличным представлением особенностей предприятия, максимально использовать параметры вместо числовых значений. Такие параметрические программы, как правило, требуют специальных методов для их запуска в системе.



В.М.Глушков на пресс-конференции, 1964 г.


Мной в 1965 году было выдвинуто понятие специализированной операционной системы, предназначенной для систем с регулярным потоком задач плюс небольшой процент нерегулярных задач. Дело в том, что операционные системы, которыми снабжались машины IBM-360 в 1965 году и которые решают случайные потоки задач, универсальны для пакетного режима и хороши для вычислительных центров (относительно хороши, конечно). А в АСУ, как правило, мы имели дело с задачами регулярными, т. е. знали, что в какое-то время должна выйти на счет такая-то задача. Поэтому мы могли использовать упреждение во времени для предварительной подготовки информации с тем, чтобы когда задача вышла на счет, необходимая информация уже была готова (магнитные ленты подкручены, первая порция информации передана в оперативную память и т. д.). Для этого вводилось расписание задач, и с помощью мультипрограммирования оставалось только заполнять возникающие промежутки счетом нерегулярных задач или отладкой новых задач, которые возникают в результате развития системы.

После „Львовской системы“ в конце 60-х-начале 70-х годов мы завершили работы по системе „Кунцево“ (для Кунцевского радиозавода).

Она делалась таким образом, чтобы перекрыть практически большинство задач в группе приборо- и машиностроительных отраслей промышленности.

Нам удалось подписать соответствующие приказы о том, чтобы 600 систем, которые разрабатывались в то время в девяти оборонных министерствах (машиностроительных и приборостроительных), делались на основе „Кунцевской системы“. Но даже в министерстве, где работает И.А. Данильченко (главный конструктор АСУ в Министерстве обороны. — Прим. авт.), „кунцевская“ идеология была внедрена в значительной степени формально, потому что у них были до этого значительные собственные проработки, скажем, в ЛОМО или на Кировском заводе. По-настоящему политика типизации была проведена только в министерстве машиностроения (директор головного института министерства по АСУ В.Н. Засыпкин), которое позже других взялось за это. И сейчас в какой-то мере типизация вводится у Э.К. Первышина, в Министерстве промышленности средств связи. А министерства, у которых были собственные заделы, не хотели с ними разлучаться. Тем не менее в рамках даже одного министерства машиностроения это не меньше 50 систем на крупных и важных заводах. И они рывком догнали все остальные министерства и даже по многим вопросам перегнали.

Создание таких крупных АСУ потребовало использования и развития методов оптимизации.

Работы в области методов оптимизации велись под руководством B.C. Михалевича и привели к созданию украинской школы методов оптимизации (B.C. Михалевич, Ю.М. Ермольев, Б.Н. Пшеничный, И.В. Сергиенко, В.В. Шкурба, Н.Э. Шор и др.), получившей быстрое признание не только в Советском Союзе, но и за рубежом.

По инициативе В.М.Глушкова в начале 1960 года из его отдела (теории цифровых автоматов) выделилась небольшая группа математиков (Михалевич, Ермольев, Шкурба, Шор), которые вместе с приехавшим из Ростова к.т.н. Бернардо дель Рио, специалистом в области транспорта, образовали отдел автоматизации статистического учета и планирования, вскоре переименованный в отдел экономической кибернетики. Руководителем отдела стал к.ф.-м.н. Михалевич, защитивший в 1956 году в Москве кандидатскую диссертацию в области теории игр и последовательных статистических решений (научный руководитель академик А.Н. Колмогоров). Отдел быстро рос (за счет молодых специалистов) и к 1964 году насчитывал около 100 человек, после чего стал распадаться и дал жизнь более чем десятку отделов и лабораторий.

Так возникла в Институте кибернетики АН Украины школа оптимизации, в которую серьезный вклад внес также Б.Н. Пшеничный, выделившийся со своей группой из отдела вычислительных методов. Уже в первые годы возникло несколько оригинальных направлений в области оптимизации.

В 1960–1962 гг. была предложена общая алгоритмическая схема последовательного анализа вариантов, включающая в себя как частный случай вычислительные методы динамического программирования (B.C. Михалевич, Н.З.Шор). Эта схема сразу нашла серьезные приложения при проектировании автомобильных и железных дорог, электрических и газовых сетей, нахождении кратчайших путей, в сетевом планировании и управлении. В.В. Шкурба развил эту схему вместе с методами имитационного моделирования для решения задач упорядочения, в частности в теории расписаний и календарном планировании, что послужило математической основой систем „Львов“, „Кунцево“ и др. Все эти работы были инициированы В.М. Глушковым, который внес огромный вклад в их организацию.



В.М. Глушков и B.C. Михалевич (70-е гг.)


В 1963–1966 гг. сотрудники отдела экономической кибернетики в масштабах Союза организовали методическое руководство внедрением методов сетевого планирования и управления в 9 министерств ВПК и строительство. Эти работы также были активно поддержаны В.М. Глушковым.

Другое большое направление исследований в области оптимизации — нелинейное программирование, в частности, недифференцируемая оптимизация. Первая работа по субградиентным методам появилась уже в 1962 г. (Н.Э. Шор). На Западе эти методы были переоткрыты лишь в 1974 году. Их разработка стала ключом к решению задач большой размерности с использованием схем декомпозиции. Первые приложения были связаны с решением транспортных задач и были инициированы А.А. Бакаевым, перешедшим в ИК АН Украины из Госплана Украины. Субградиентные методы фактически стали математической основой многих исследований в области транспорта, выполненных в отделе А.А. Бакаева.

В эти же годы субградиентные методы были применены для оптимизации загрузки прокатных станов СССР. В дальнейшем В.М.Глушков, В.С.Михалевич вместе с академиком Л.В.Канторовичем приложили огромные усилия для организации внедрения систем оптимальной загрузки трубных станов СССР, математической основой которых служили алгоритмы, разработанные в ИК АН Украины.

Среди видных представителей киевской оптимизационной школы — академик АН Украины Б.Н. Пшеничный и его ученики (нелинейный и выпуклый анализ, дифференциальные игры, оптимальное управление, нелинейное программирование, динамические модели экономики); Ю.М. Ермольев и его ученики (нелинейное и стохастическое программирование, негладкая оптимизация, моделирование и оптимизация сложных стохастических систем).

Серьезные исследования по разработке приближенных методов дискретной оптимизации выполнены под руководством академика АН Украины И.В. Сер-геенко.

Доктор ф.-м. н. В.А. Трубин выполнил ряд работ в области создания алгоритмов в задачах дискретно-непрерывного типа (синтез сетей, размещение производства и др.), а также провел ряд тонких исследований по анализу вычислительной сложности задач дискретной оптимизации.



Анатолий Иванович Китов


Развивая концепцию ОГАС, анализируя работы по диалоговой системе балансовых расчетов (ДИСПЛАН), В.М. Глушков в последние годы своей жизни написал работы по системной оптимизации, связанные с оптимизацией многокритериальных систем в диалоговом режиме. Это направление получило продолжение в многочисленных работах В.Л. Волковича и его учеников.

В 1981 году группа ученых Института кибернетики им. В.М. Глушкова за разработку комплекса методов оптимизации получила Государственную премию Украины (B.C. Михалевич, А.А. Бакаев, Ю.М. Ермольев, Т.П. Марьянович, И.В. Сергиенко, В.Л. Волкович, Б.Н. Пшеничный, В.В. Шкурба, Н.Э. Шор).

В начале 60-х годов заместителем Глушкова по работам, проводимым в Москве в оборонных министерствах по. созданию систем управления предприятиями, был А.И. Китов. Я уверен — имей Глушков больше времени, он обязательно рассказал бы об этом замечательном человеке. Познакомились они заочно. Еще до приезда в Киев, живя в Свердловске, Глушков в 1956 году прочитал его книгу „Цифровые вычислительные машины“ — первую книгу-учебник по вычислительной технике.

Участник Великой Отечественной войны, один из немногих уцелевших двадцатилетних, Китов в 1950 году окончил Военную артиллерийскую академию им. Ф.Э. Дзержинского (с золотой медалью) и был направлен в Академию артиллерийских наук, где получил задание работать в СКБ-245 Министерства машиностроения и приборостроения СССР для изучения электронной вычислительной техники и возможностей ее использования в Министерстве обороны.

В 1952 году в его руки попала книга Винера „Кибернетика или управление и связь в животном и машине“. Изучение этой книги, а также беседы с Алексеем Андреевичем Ляпуновым, которого А.И. Китов считал своим учителем, привели его к убеждению, что принятая в нашей стране официальная трактовка кибернетики как буржуазной лженауки является неправильной. Он подготовил статью о содержании и значении новой науки. После длительного (трехлетнего) процесса обсуждения статьи на различных совещаниях и семинарах она была доработана с участием А.А. Ляпунова и С.Л. Соболева и опубликована под названием „Основные черты кибернетики“ в августе 1955 года в журнале „Вопросы философии“ вместе со статьей Э. Кольмана „Что такое кибернетика“, что привело к признанию и дальнейшему развитию кибернетики.

В 1954 году его назначили руководителем Вычислительного центра Министерства обороны СССР. Занимаясь автоматизацией управления в военном деле, он много думал об автоматизации и рационализации управления народным хозяйством страны и в январе 1959 года послал в ЦК КПСС на имя Хрущева письмо о необходимости развития вычислительной техники. Оно попало Брежневу и возымело большое действие. Была создана межведомственная комиссия под председательством А.И. Берга, подготовившая постановление ЦК КПСС и Совета Министров СССР об ускорении и расширении производства вычислительных машин и их внедрении в народное хозяйство, которое было принято и сыграло очень важную роль.



Тадеуш Павлович Марьянович


Осенью 1959 года А.И. Китову пришла в голову идея о целесообразности создания единой автоматизированной системы управления для Вооруженных Сил и народного хозяйства страны на базе общей сети вычислительных центров, создаваемых и обслуживаемых Министерством обороны. При большом отставании в производстве ЭВМ от США концентрация выпускаемых машин в мощных вычислительных центрах и их четкая и надежная эксплуатация военным персоналом позволили бы сделать резкий скачок в использовании ЭВМ. Несколько месяцев он работал над обоснованием этой идеи и представил большой доклад в ЦК КПСС. Для его рассмотрения была создана комиссия Министерства обороны под председательством К.К. Рокоссовского. Поскольку в докладе (в преамбуле) давалась резкая критика состояния дел в Министерстве обороны с внедрением ЭВМ, это определило негативное отношение к докладу. Главное же было в том, что работники аппарата ЦК КПСС и верхних эшелонов административной власти, в частности Министерства обороны, почувствовали, что коренная перестройка управления приведет к устранению их от рычагов власти. А с этим они не могли согласиться. И потому Китова за его „большой доклад“… исключили из партии. Лишили престижной должности!

Глушков, познакомившийся уже лично с Китовым в начале 60-х годов, знал об этом и не мог не понимать, чем может обернуться выбранный им путь. Встав на него, он, как и во всем, шел только вперед, продолжая энергично развивать и поддерживать работы по автоматизированному проектированию и управлению сложными системами.

Получилось так, что еще одним самостоятельным направлением, связанным с созданием сложных систем, стало моделирование проектируемых систем с помощью универсальных языков, которые мы специально разрабатывали: СЛЭНГ, НЕДИС. У нас этим занимается отдел Марьяновича. Здесь перспектива заключается в том, чтобы, соединив методы системной оптимизации с языками моделирования и описаниями больших систем, можно было, сформулировав ограничения на соответствующих языках и изменяя те или иные параметры, моделировать (и оценивать) различные варианты проектируемой системы.

Новый этап в развитии автоматизированных систем управления предприятиями начался во второй половине 70-х годов. Это так называемые комплексные АСУ, в которых органически сливаются в единое целое вопросы автоматизированного проектирования, автоматизированного управления технологией, автоматизация испытаний готовой продукции и автоматизация организационного управления. Вот такое комплексное АСУ, первое в стране, создается сейчас для Ульяновского авиационного завода. Занимаются этим опять-таки Скурихин с Морозовым и почти все СКВ Морозова. (Работа была завершена в конце 80-х годов, когда В.М. Глушкова уже не было. — Прим. авт.).



Владимир Ильич Скурихин


Глушков не случайно несколько раз упоминал фамилию Скурихина, своего заместителя по научной работе.

Скурихин был достойным партнером В.М. Глушкова в работах по созданию автоматизированных систем управления, системам автоматизированного проектирования, системам автоматизации промышленного эксперимента. Простое перечисление созданных под его руководством систем показывает, какая огромная работа была проделана им, его отделом и подразделениями СКВ, которые также находились под его опекой.

Еще в 1959–1963 годах при активном участии Скурихина на Николаевском судостроительном заводе имени 61 коммунара была создана система „Авангард“ — первая на Украине и в бывшем Советском Союзе система автоматизации так называемых плазовых работ в судостроении и вырезки из листовой стали деталей корпуса судна. Задуманная вначале как система подготовки программ для газорезательных автоматов с программным управлением (эту работу инициировал Г.А.Спыну, научный сотрудник Киевского института автоматики), она стала в дальнейшем прообразом так называемых интегрированных систем, так как охватывала весь комплекс плазовых работ по проектированию деталей судокорпусного набора, подготовку необходимой документации для их изготовления, включая карты раскроя и технологическое обеспечение всего процесса проектирования и изготовления судокорпусных деталей. Дальнейшее развитие идеи „Авангарда“ получили в системе автоматизированного проектирования корпусов подводных лодок (система „Чертеж“, 1968–1978) — крупномасштабной системе, позволившей в 20–25 раз сократить проектные трудозатраты. Этим занимались В.И. Скурихин, Г.И. Корниенко, И.А. Янович, В.И. и М.И. Диановы и др. Наиболее крупная разработка была осуществлена в одном из проектных институтов Ленинграда — создан многоуровневый мощный программно-технический комплекс, обеспечивающий все стадии исследовательского проектирования надводных и подводных кораблей. Идеи комплексного подхода к автоматизации производства активно поддерживал В.М. Глушков.

Его влияние сказалось и на последующих системах обработки данных натурных гидродинамических испытаний судов („Скорость“ и „Гелиограф“), системы испытаний вновь создаваемых самолетов („Темп“, „Вираж“); системы автоматизированного проектирования объектов энергетического машиностроения („Каштан“) и паротурбинных установок АЭС и др.

Полученный огромный опыт позволил В.И. Скурихину перейти к разработке и обоснованию научных основ построения и функционирования комплексных автоматизированных систем управления, в которых органически сливаются в единое целое этапы автоматизированного проектирования, технологической подготовки производства, управления производством и испытаний готовой продукции. Эти идеи, поддержанные Глушковым, В.И. Скурихин, А.А. Морозов и их сотрудники реализовали на ряде предприятий оборонного комплекса.

Параллельно с работами по созданию автоматизированных систем развивались работы по теории и системам автоматического управления. Они начались в 1963 году, когда в институте появились А.Г. Ивахненко и А.И. Кухтенко, ведущие украинские ученые в области теории автоматического управления. К числу наиболее весомых результатов, полученных при Глушкове, следует отметить в первую очередь разработку теории инвариантности систем управления (непрерывных и дискретных, линейных и нелинейных, работы А.Г. Ивахненко, А.И. Кухтенко, В.М. Кунцевича, В.В. Павлова); разработку теории систем управления объектами с распределенными параметрами и создание первых образцов систем управления для такого важного класса объектов управления, как термоядерные реакторы типа „Токамак“ (А.И. Кухтенко, Ю.И. Самойлен-ко, Ю.П. Ладиков-Роев); разработку теории систем управления с частотно- и векторными показателями качества (А.И. Кухтенко, В.Л. Волкович, А.Н. Воронин); разработку новых методов решения задач управления и идентификации в условиях неопределенности (А.Г. Ивахненко, В.М. Кунцевич, В.И. Иваненко, Г.М. Бакан, М.М. Бычак). В результате был создан целый ряд уникальных по тем временам цифровых систем управления стендовыми испытаниями образцов авиакосмической техники, аналоговых и цифровых систем управления процессами промышленной технологии в химической и нефтеперерабатывающей отраслях, систем управления безаварийного движения морских судов и др.

Человеческий фактор

Огромный объем работ, выполненный Институтом кибернетики АН Украины за двадцать пять лет, был бы невозможен, если бы не были подготовлены за эти годы многотысячные кадры специалистов для института и других организаций Украины. В.М. Глушков нашел в себе силы в последние дни рассказать и об этом.

Прежде всего были организованы специализации по вычислительной математике и вычислительной технике в Киевском университете и Киевском политехническом институте на радиотехническом факультете. Позже стало возможным организовать на базе этих специальностей факультет кибернетики в Киевском университете и факультет автоматики и вычислительной техники в Киевском политехническом институте, которые уже выпустили многие сотни специалистов.

Ученик Глушкова В.Н. Редько, в настоящее время заведующий кафедрой теории программирования Киевского университета, вспоминает:

„Трудности подготовки кадров, как и следовало ожидать, проявились уже на начальном этапе. В то время не было ясно, какие компоненты должно включать даже базовое образование по кибернетике. Давалось множество часто противоречивых предложений. Одни, руководствуясь тем, что отец кибернетики Винер трактовал ее как управление и связь в животном и машине, делали упор на традиционную теорию управления, особенно в части автоматического регулирования. Другие — на теории проводной связи и радиосвязи. Третьи особо выделяли теории электрических цепей и вычислительных машин, другие инженерно-технические теории, появившиеся на научной арене намного раньше кибернетики. Наконец, четвертые говорили о нейрофизиологической природе кибернетики, вероятностно-статистических ее особенностях, о множестве более специальных, порой весьма своеобразных теорий, которые должны были бы составить фундамент этой новой рождающейся дисциплины. Нужно было иметь прозорливость Глушкова, чтобы из множества разрозненных и противоречивых фактических и потенциально возможных предложений вычленить нечто концептуально единое и конкретно решить, что базовое кибернетическое образование должно основываться на трех китах: алгебре, теории автоматов и теории алгоритмов. Жизнь в полной мере подтвердила правильность этого решения.

Определившись в этом вопросе, Виктор Михайлович пошел дальше. Поставил два взаимосвязанных вопроса: на кого делать ставку в кибернетическом образовании, и каков, если не оптимальный, то рациональный путь к конкретной реализации этого базового образования.

Обдумывалось множество подходов к решению этих вопросов. Учитывались ретроспективы научно-педагогического формирования коллективов, являющихся возможными кандидатами на выбор, прогнозировались перспективы этого выбора. При этом делалась ставка на механико-математический факультет Киевского университета.

Этот коллектив более чем какой-либо на Украине был готов к эффективному вложению „образовательного капитала“. Особенно зримо это проявилось с приездом из-за границы в 1954 году профессора Льва Аркадиевича Калужнина, сплотившего вокруг себя студенческую молодежь, которая уже в школьные годы зарекомендовала себя активным участием в математических кружках при университете и математических олимпиадах самого различного уровня. Стержнем работы с этой молодежью была современная алгебра, математическая логика и — теория алгоритмов. При этом особенно культивировалась алгебра.

Виктор Михайлович сделал единственно правильный тактический шаг — шел от алгебры к автоматам, а не наоборот. Ведь к автоматам пока еще не было интереса.

Глушков сразу же по приезде в Киев начал со спецкурса по непрерывным топологическим группам. Затем по материалам известного сборника статей под редакцией Шеннона и Маккарти „Автоматы“ проводил семинар под одноименным названием. Несколько позже читал спецкурс „Полугруппы и автоматы“, чем в большой мере реализовал построение „мостика“ между алгеброй и автоматами. При этом сознательно ключевая роль в рамках сложившихся реалий отводилась первому спецкурсу, который он прочел для небольшой группы студентов разных курсов, специализировавшихся у Л.А. Калужнина. В.М. Глушков на примере важнейших результатов современной алгебры, пожалуй, наиболее ярко раскрыл самое главное — свой стиль мышления, который он пронес через всю жизнь.

Многое стерлось из моей памяти — одного из слушателей спецкурса. Но и сегодня отчетливо помнится, как Виктор Михайлович, следуя Клейну и Ли, неформально освещал основные теоретико-групповые принципы геометрии, раскрывая истоки топологических групп как групп непрерывных преобразований. Затем убедительно мотивировал целесообразность введения в рассмотрение различных уровней абстракции, конкретно проявившиеся в том, что наряду с исследованиями, в которых топологические группы рассматриваются главным образом как группы преобразований, все чаще появлялись работы, в которых эти группы выступали в качестве абстрактных топологических групп. Наряду с основополагающей работой Брауэра рассматривались фундаментальные работы отечественных выдающихся математиков А.Н. Колмогорова, А.И. Мальцева, Л.С. Понтрягина, усилиями которых был создан новый раздел математики — топологическая алгебра, — изучающий различные алгебраические структуры, наделенные топологией.

В созданном контексте уже рельефнее смотрятся известные результаты Картана и Вейля о локально евклидовых группах, пространства которых являются гладкими многообразиями, а операции не только непрерывны, но и дифференцируемы, получивших название групп Ли. Да и сама пятая проблема Гильберта, является ли группой Ли любая локально евклидова топологическая группа (при подходящем выборе локальных координат), предстала в новом прагматическом ракурсе.

Такого виденья было уже достаточно, чтобы понять, что эту „крепость“ не взять простым штурмом. Поэтому велись поиски обходных путей, ведущих к построению теории локально-бикомпактных топологических групп, к изучению их алгебраической и топологической структуры, часто базирующейся на результатах теории групп Ли и установленных связях между локально-биокомпактными группами и группами Ли, в частности линейными. В связи с этим освещались первоклассные результаты А.И. Мальцева, Л.С. Понтрягина, Джона фон Неймана, Смита, Монтгомери, Циппина, Вейля, Хаара, Пегера, Глиссона, Шевале, Ивасова, Ямабе и др. На основе этих результатов исключительно прозрачно была раскрыта идейная основа полного положительного решения пятой проблемы Гильберта, данного в 1952 году Глиссоном, Монтгомери и Циппином и усовершенствованного несколько позже Ямабе.

Заключительным аккордом спецкурса явилось вдохновенное освещение „мостика“ между строением локально-бикомпактных групп и пятой проблемой Гильберта, фундаментом которого стали достигнутые результаты и открытые проблемы.

Восхищали здесь не только ажурность конструкции связующего „мостика“, созданного Виктором Михайловичем, но и та исключительная скромность, с которой он все это преподносил. На первом плане снова Понтрягин, Мальцев, фон Нейман и др., а его собственная персона за кадром, хотя уже тогда нам было ясно, что и он, несомненно, имеет все основания для гордости. И пойди уясни, — возможно, этот морально-нравственный урок на фоне ярких профессиональных результатов сыграл в нашей жизни куда более важную роль, чем сами эти результаты“.

В.М. Глушков не ограничился подготовкой специалистов в Киевском государственном университете им. Т. Шевченко. Он мобилизовал на эту работу ведущих сотрудников своего института и сам постоянно занимался ею. И, что очень важно, был примером в отношении к делу, своим обязанностям, в поведении со своими друзьями, заботливом отношении к семье.

Я требовал, чтобы все сотрудники, будучи в командировках в украинских городах, посещали вузы и либо читали лекции, либо проводили консультации и знакомились со студентами и агитировали наиболее способных на работу в наш институт.

Проводилась работа и со школьниками. Институт взял шефство над школами, где в старших классах стали преподавать программирование, устраивали всевозможные конкурсы и олимпиады в нашем институте, помогли в организации Малой академии наук в Крыму, где школьники летом слушали лекции лучших наших, московских и новосибирских специалистов. Организовали школу-интернат в Феофании, позднее она была передана Киевскому университету им. Тараса Шевченко.

Ученые института читали лекции (сначала я, а затем и остальные) в Доме научно-технической пропаганды для переподготовки инженерно-технических работников Киева. Циклы лекций по теории автоматов, теории алгоритмов были изданы отдельными монографиями. Благодаря этому в Киеве появилась большая армия инженеров, владевших формальными методами проектирования ЭВМ.

Были разработаны учебные программы для вузов, естественно, аспирантские программы, поскольку не было еще таких специальностей.

И наконец, не было забыто и среднее звено, которое многие упускают, — техники-операторы ЭВМ. Удалось ввести эту специальность в один из киевских техникумов. На Украине была создана хорошая база для подготовки кадров разработчиков ЭВМ и кибернетических систем различного назначения.

В подготовке кадров высшей квалификации (докторов и кандидатов наук) ключевым пунктом всегда оставалась подготовка докторов, потому что, не решив этой проблемы, институт не мог решить и другой проблемы — собрать достаточное количество людей, которые могли бы руководить аспирантами и составить ядро будущих ученых советов по защитам диссертаций. Через 10 лет в институте было 60 докторов наук и около полутысячи кандидатов наук. Много докторов наук было подготовлено для вузов и других организаций.



Счастливый отец (1956 г.)


По подготовке кадров Институт кибернетики тогда был уникальным даже по сравнению с организациями И.В. Курчатова и С.П. Королева, хотя у них было больше возможностей: они платили более высокие зарплаты; быстро добывали вакансии членов-корреспондентов и академиков; кроме того, им не требовались специалисты принципиально новых направлений. А когда, например, специалист в области электрических машин, электропривода или радиотехники становился специалистом в области системотехники и вычислительной техники, то тут требовался поворот на сто восемьдесят градусов, и это гораздо сложнее.

В первый период я сам занимался подбором кадров кандидатов наук и выше, и у нас практически осечек не было. Все потом прижились и стали известными учеными. Впоследствии были приглашены несколько докторов со стороны, в частности Б.Б. Тимофеев, Г.Е. Пухов.

Когда я принимал людей для работы в институте, то обращал внимание не столько на близость специальности, сколько на энтузиазм и на способности, в том числе на способность работать в коллективе, потому что это чрезвычайно важно, — одиночки, хотя они тоже нужны, не могут составить основу научного коллектива.

Тематика выбиралась таким образом, чтобы возможно больше отвечать интересам подобранных людей. Это позволило сократить период их вхождения в новую область до минимума и открывало возможности защиты докторских диссертаций. Таково было наше кредо, поэтому институт очень быстро решил проблему становления кадров высшей квалификации.



В.М.Глушков и Ю.В. Капитонова


Неудивительно, что в 1969 г., когда Институту кибернетики присуждали орден Ленина, в формулировке Указа было сказано„…и за подготовку кадров“.

Высококвалифицированные кадры специалистов по информатике, вычислительной технике и кибернетике, работающие в различных научно-исследовательских организациях и на предприятиях Украины и готовящиеся в высших и специальных учебных заведениях, — это тоже результат его деятельности, часть его наследия, работающая на будущее Украины.

Многие из тех, кто трудился вместе с Глушковым, стали известными учеными. Рассказ о них выходит за рамки книги. Отметим лишь сотрудников, работавших в его отделе. Бессменный заместитель В.М.Глушкова по отделу, Юлия Владимировна Капитонова, активно участвовала в научных исследованиях, проводимых под руководством Глушкова. В 1965 году она защитила кандидатскую, а в 1976 году — докторскую диссертации. Когда Виктора Михайловича не стало, Юлию Владимировну назначили руководителем отдела. Вместе с коллективом отдела она продолжает и развивает работы, начатые еще при жизни В.М. Глушкова, нашла время и силы сделать очень многое для увековечивания памяти своего учителя. Ежегодно проводит семинары, посвященные его памяти, бережно хранит многие документы и фотографии, связанные с его деятельностью. Вместе с А.А.Летичевским и И.В. Вельбицким оформила комнату-музей В.М. Глушкова. Человек незаурядный, исключительного трудолюбия и высоких способностей, Ю.В.Капитонова проявила себя как достойная ученица и продолжательница дела своего учителя. Она — лауреат премии Ленинского комсомола, Государственной премии СССР, премии Совета Министров СССР и премии имени В.М. Глушкова, Заслуженный деятель науки и техники Украины.

Ученик В.М. Глушкова и его ближайший сподвижник А.А. Летичевский, для которого ученый стал духовным отцом (отец А.А. Летичевского погиб на войне, когда он был шестилетним ребенком), — известный ученый, член-корреспондент АН Украины. Награжден премией имени Ленинского комсомола, удостоен звания лауреата Государственной премии СССР. и премии имени В.М. Глушкова. Еще при жизни В.М. Глушкова (с 1980 года) А.А. Летичевский стал руководителем отдела рекурсивных вычислительных машин Института кибернетики АН Украины. Коллектив отдела успешно развивает идеи В.М. Глушкова по созданию новых архитектур ЭВМ следующих поколений и их математического обеспечения.

Одним из первых аспирантов Глушкова был А.А. Стогний. Еще до появления ученого в Киеве он прошел преддипломную практику в бывшей лаборатории Лебедева, работая на МЭСМ. Успешно защитив кандидатскую диссертацию, стал работать в отделе Глушкова.

Выполненные им работы по структуре и математическому обеспечению ЭВМ с интерпретацией входных языков высокого уровня и схемной реализацией средств программного обеспечения были одними из первых в мире. Эти исследования нашли свое воплощение в ЭВМ серии МИР и „Днепр-2“.

В 1968 году А.А. Стогний был назначен заместителем директора Института кибернетики АН Украины. Из группы сотрудников, с которыми он работал, был организован новый отдел, которым он успешно руководил в течение многих лет. В 1970 году он защитил докторскую диссертацию. Был избран членом-корреспондентом АН Украины, а затем АН СССР (теперь России).

Отдел А.А. Стогния вел исследования и разработки в области автоматизированных систем управления, программного обеспечения и информационных систем, систем баз данных и знаний.

Во время болезни Глушкова Стогний был членом „штаба“ помощи ученому, созданному в Москве, и хотя сам был не здоров, делал все, что мог, чтобы облегчить участь своего учителя.

После смерти В.М. Глушкова он стал директором Института прикладной информатики Киевской городской госадминистрации.

В настоящее время А.А. Стогний — признанный лидер в области интеллектуализации систем баз данных и знаний и систем управления.

Он возглавляет рабочую группу управления данными Всемирной организации компьютерных технологий, комиссию по вычислительной технике Академии наук Украины, руководит Киевским обществом информатики и вычислительной техники. С 1991 года А.А. Стогний является руководителем Украинского отделения по базам данных Всемирной компьютерной ассоциации. Он — лауреат Государственной премии СССР, награжден орденами Трудового Красного Знамени, „Знак Почета“.

Тадеуш Павлович Марьянович начал работу в отделе В.М. Глушкова молодым специалистом. Теперь он доктор технических наук, профессор, член-корреспондент АН Украины, заслуженный деятель науки Украины, руководит отделом методов системного моделирования, где разрабатываются программно-алгоритмические средства имитационного моделирования сложных процессов и систем. Выполненные под его руководством работы получили высокую оценку. Он лауреат Государственной премии СССР, Государственной премии Украины, премии Совета Министров СССР, премии имени В.М. Глушкова, награжден орденом „Знак Почета“. В течение двадцати лет был заместителем В.М. Глушкова по кафедре Московского физико-технического института, организованной по инициативе Глушкова при Институте кибернетики АН Украины.



Семинар в бывшем отделе В.М. Глушкова. Выступает А.А. Летичевский. Справа — Ю.В. Капитонова


Глушков не отгораживался стеной от своих учеников, соратников по работе, был добрым семьянином. „Попадая в любую компанию, он всегда становился ее душой, — вспоминает В.М. Глушкова. — Искрящийся юмор делал его особенно привлекательным. Любил петь и знал много песен, особенно певучих украинских „Дивлюсь я на небо“, „Два кольори“, „Реве та стогне Дншр широкий“ и др. Мог в течение многих часов читать стихи наизусть. Единственно, чему он не научился в жизни, так это танцевать. И всегда почему-то смущался и оправдывался.

Самым любимым и единственным отдыхом для него была рыбалка на Днепре. В санаториях он на другой день доставал блокнот, ручку и приступал к работе. На Днепр всегда выезжала мужская компания, в которую входили ученики, молодые ученые, те, кто поверил и пошел с ним в новую область науки. Все они потом выросли в маститых ученых. Капитаном всегда был В.П. Деркач. Среди рыбаков были Т.П. Марьянович, В.А. Тарасов, B.C. Михалевич, А.А. Стогний, Г.М. Добров. Жены приезжали только в гости. Сколько шуток, юмора, рыбацких рассказов, анекдотов, забавных историй можно было услышать здесь. Песни неслись далеко вдоль Днепра.

Он не мог быть счастливым в одиночку. Если прочитал, узнал что-то интересное, то обязательно спешил поделиться этим. Художественную литературу читал постоянно, несмотря на занятость, и считал, что без этого не мог бы сделать в науке всего того, чего достиг, особенно в математике: художественная литература учит человека мечтать, зарождает в нем фантазию, нужную математику. Старался уделять внимание нашим детям — дочерям Оле и Вере, особенно когда они стали подрастать и становиться личностями. Как жаль, что он не имел времени заняться их воспитанием вплотную, но советы давал часто. Порой мне казалось, что он слишком суров к детям. Он не уставал повторять, что нельзя баловать детей, что они должны научиться преодолевать трудности с детства, и в это время мы можем их подстраховать, но помощь должна быть разумной. Человек всегда должен иметь цель, мечту, к которой должен стремиться, борясь с трудностями, и тогда, достигнув ее, будет испытывать настоящую радость, говорил он. Если дети все имеют, все им доступно, то это вызывает леность ума, развивает слабохарактерность. И всегда возражал против принуждения в занятиях, в учебе, считал, что это наносит вред. Надо детей заинтересовать, тогда не понадобится строгий контроль, они сделают больше и научатся работать. Сейчас наши дети стали взрослыми. У Веры растет славная девочка Виктория. У Оли очень способный, весь в деда сын Виктор“.



На отдыхе в Болгарии

Что скажет история?

Задача построения общегосударственной автоматизированной системы управления (ОГАС) экономикой была поставлена мне первым заместителем Председателя Совета Министров (тогда А.Н. Косыгиным) в ноябре 1962 года. К нему меня привел президент Академии наук СССР М.В. Келдыш, с которым я поделился некоторыми своими соображениями по этому поводу.

Когда я кратко обрисовал Косыгину, что мы хотим сделать, он одобрил наши намерения, и вышло распоряжение Совета Министров СССР о создании специальной комиссии под моим председательством по подготовке материалов для постановления правительства. В эту комиссию, вошли ученые-экономисты, в частности, академик Н.Н. Федоренко, начальник ЦСУ В.Н. Старовский, первый заместитель министра связи А.И. Сергийчук, а также другие работники органов управления.

Комиссии и ее председателю, т. е. мне, были предоставлены определенные полномочия. Они заключались в том, что я имел возможность прийти в любой кабинет — к министру, председателю Госплана — и задавать вопросы или просто сесть в уголке и смотреть, как он работает: что он решает, как решает, по каким процедурам и т. д. Естественно, я получил разрешение ознакомиться по своему выбору с любыми промышленными объектами — предприятиями, организациями и пр.



Дочери В.М. Глушкова: Ольга (слева) с сыном Виктором и Вера с дочерью Викторией


К этому времени у нас в стране уже имелась концепция единой системы вычислительных центров для обработки экономической информации. Ее выдвинули академик, виднейший экономист В.С. Немчинов и его ученики. Они предложили использовать вычислительную технику, имевшуюся в вычислительных центрах, но не в режиме удаленного доступа. Экономисты, да и специалисты по вычислительной технике этого тогда не знали. Фактически они скопировали предложения, подготовленные в 1955 году Академией наук СССР о создании системы академических вычислительных центров для научных расчетов, в соответствии с которыми был создан Вычислительный центр АН Украины. Они предложили сделать точно то же для экономики: построить в Москве, Киеве, Новосибирске, Риге, Харькове и других городах крупные вычислительные центры (государственные), которые обслуживались бы на должном уровне и куда сотрудники различных экономических учреждений приносили бы свои задачи, считали, получали результаты и уходили. Вот в чем состояла их концепция. Меня, конечно, она удовлетворить не могла, так как к этому времени мы уже управляли объектами на расстоянии, передавали данные из глубины Атлантики прямо в Киев в вычислительный центр.

У нас в стране все организации были плохо подготовлены к восприятию обработки экономической информации. Вина лежала как на экономистах, которые практически ничего не считали, так и на создателях ЭВМ. В результате создалось такое положение, что у нас органы статистики и частично плановые были снабжены счетно-аналитическими машинами образца 1939 года, к тому времени полностью замененными в Америке на ЭВМ.

Американцы до 1965 года развивали две линии: научных машин (это двоичные машины с плавающей запятой, высокоразрядные) и экономических машин (последовательные двоично-десятичные с развитой памятью и т. д.). Впервые эти две линии соединились в машинах фирмы IBM.

У нас нечему было сливаться, так как существовали лишь машины для научных расчетов, а машинами для экономики никто не занимался. Первое, что я тогда сделал, — попытался заинтересовать конструкторов, в частности Б.И. Рамеева (конструктора ЭВМ „Урал-1“, „Урал-2“) и В.В. Пржиялковского (конструктора ЭВМ серии „Минск“), в необходимости разработки новых машин, ориентированных на экономические применения.

Я организовал коллектив у нас в институте, сам разработал программу по его ознакомлению с задачей, поставленной Косыгиным. Неделю провел в ЦСУ СССР, где подробно изучал его работу. Просмотрел всю цепочку от районной станции до ЦСУ СССР. Очень много времени провел в Госплане, где мне большую помощь оказали старые его работники. Это прежде всего Василий Михайлович Рябиков, первый заместитель председателя Госплана, ответственный за оборонную тематику, И. Спирин, заведующий сводным сектором оборонных отраслей в Госплане СССР. У обоих был очень большой опыт руководства военной экономикой, и, конечно, они хорошо знали работу Госплана. С их помощью я разобрался со всеми задачами и этапами планирования и возникающими при этом трудностями.

За 1963 год я побывал не менее чем на 100 объектах, предприятиях и организациях самого различного профиля: от заводов и шахт до совхозов. Потом я продолжал эту работу, и за десять лет число объектов дошло почти до тысячи. Поэтому я очень хорошо, возможно, как никто другой, представляю себе народное хозяйство в целом: от низа до самого верха, особенности существующей системы управления, возникающие трудности и что надо считать.

Понимание того, что нужно от техники, у меня возникло довольно быстро. Задолго до окончания ознакомительной работы я выдвинул концепцию не просто отдельных государственных центров, а сети вычислительных центров с удаленным доступом, т. е. вложил в понятие коллективного пользования современное техническое содержание.

Мы (В.М. Глушков, В.С. Михалевич, А.И. Никитин и др. — Прим, авт.) разработали первый экскизный проект Единой Государственной сети вычислительных центров ЕГСВЦ, который включал около 100 центров в крупных промышленных городах и центрах экономических районов, объединенных широкополосными каналами связи. Эти центры, распределенные по территории страны, в соответствии с конфигурацией системы объединяются с остальными, занятыми обработкой экономической информации. Их число мы определяли тогда в 20 тысяч. Это крупные предприятия, министерства, а также кустовые центры, обслуживавшие мелкие предприятия. Характерным было наличие распределенного банка данных и возможность безадресного доступа из любой точки этой системы к любой информации после автоматической проверки полномочий запрашивающего лица. Был разработан ряд вопросов, связанных с защитой информации. Кроме того, в этой двухъярусной системе главные вычислительные центры обмениваются между собой информацией не путем коммутации каналов и коммутации сообщений, как принято сейчас, с разбивкой на письма, я предложил соединить эти 100 или 200 центров широкополосными каналами в обход каналообразующей аппаратуры с тем, чтобы можно было переписывать информацию с магнитной ленты во Владивостоке на ленту в Москве без снижения скорости. Тогда все протоколы сильно упрощаются и сеть приобретает новые свойства. Это пока нигде в мире не реализовано. Наш проект был до 1977 года секретным.

Кроме структуры сети я сразу счел необходимым разработать систему математических моделей для управления экономикой с тем, чтобы видеть регулярные потоки информации. Об этом я рассказал академику В.С. Немчинову, который в то время был тяжело болен и лежал дома, однако принял меня, выслушал и в принципе все одобрил.

Потом я представил нашу концепцию М.В. Келдышу, который все одобрил, за исключением безденежной системы расчетов населения, но без нее система тоже работает. По его мнению, она вызвала бы ненужные эмоции, и вообще не следует это смешивать с планированием. Я с ним согласился, и мы эту часть в проект не включили. В связи с этим мной была написана отдельная записка в ЦК КПСС, которая много раз всплывала, потом опять исчезала, но никакого решения по поводу создания безденежной системы расчетов так и не было принято.

Закончив составление проекта, мы передали его на рассмотрение членам комиссии.

Добиваясь решения огромной по сложности и материальным затратам задачи, В.М. Глушков в 1962 году написал статью для „Правды“.

Прочитав ее, бывший научный руководитель Глушкова по докторской диссертации А.Г. Курош, внимательно следивший за успехами талантливого ученика, написал ему:

„…Мечтая, могу представить себе Вас во главе всесоюзного органа, планирующего и организующего перестройку управления экономикой, т. е. народным хозяйством на базе кибернетики (в соответствии, понятно, с основными установками высших органов страны), а также внедрение кибернетики в промышленность, науку, и, хочу подчеркнуть, в преподавание (на всех уровнях), медицину и вообще во все виды интеллектуальной деятельности. Было бы печально, если бы этот орган оказался министерским или государственным комитетом, т. е. органом бюрократическим. Это должен быть орган высокой интеллектуальности, составленный из людей, способных, каждый в своей области, на такое же понимание больших задач, какое есть, видимо, у Вас по проблеме в целом. Это должен быть орган почти без аппарата, орган мыслителей, а не чиновников. Это лишь мечты, конечно, кроме вопроса о главе этого органа, — Вы могли бы много сделать для реализации этих мечтаний…“

К сожалению, после рассмотрения проекта комиссией от него почти ничего не осталось, вся экономическая часть была изъята, осталась только сама сеть. Изъятые материалы уничтожались, сжигались, так как были секретными. Нам даже не разрешали иметь копию в институте. Поэтому мы, к сожалению, не сможем их восстановить.

Против всего проекта в целом начал резко возражать В.Н. Старовский, начальник ЦСУ. Возражения его были демагогическими. Мы настаивали на такой новой системе учета, чтобы из любой точки любые сведения можно было тут же получить. А он ссылался на то, что ЦСУ было организовано по инициативе Ленина, и оно справляется с поставленными им задачами; сумел получить от Косыгина заверения, что той информации, которую ЦСУ дает правительству, достаточно для управления, и поэтому ничего делать не надо.



В.М. Глушков, Ю.А. Митропольский, Н.Н. Боголюбов


В конце концов, когда дошло дело до утверждения проекта, все его подписали, но при возражении ЦСУ. Так и было написано, что ЦСУ возражает против всего проекта в целом.

В июне 1964 года мы вынесли наш проект на рассмотрение правительства. В ноябре 1964 года состоялось заседание Президиума Совета Министров, на котором я докладывал об этом проекте. Естественно, я не умолчал о возражении ЦСУ. Решение было такое поручить доработку проекта ЦСУ, подключив к этому Министерство радиопромышленности.

В течение двух лет ЦСУ сделало следующую работу. Пошли снизу, а не сверху: не от идеи, что надо стране, а от того, что есть. Районным отделениям ЦСУ Архангельской области и Каракалпакской АССР было поручено изучить потоки информации — сколько документов, цифр и букв поступает в районное отделение ЦСУ от предприятий, организаций и т. д.

По статистике ЦСУ, при обработке информации на счетно-аналитических машинах на каждую вводимую цифру или букву приходится 50 сортировочных или арифметических операций. Составители проекта с важным видом написали, что когда будут использоваться электронные машины, операций будет в десять раз больше. Почему это так, одному Господу Богу известно. Потом взяли количество всех бумажек, умножили на 500 и получили производительность, требуемую от ЭВМ, которую надо, например, установить в Архангельске и в Нукусе (в Каракалпакской АССР). И у них получились смехотворные цифры: скорость вычислений ЭВМ должна составлять около 2 тысяч операций в секунду или около того. И все. Вот в таком виде подали проект в правительство.

Снова была создана комиссия по приемке, меня хотели сделать председателем, но я отказался по этическим соображениям. С этим согласились. После ознакомления членов комиссии с проектом возмутились представители Госплана, которые заявили, что они не все концепции академика Глушкова разделяют, но в его проекте хотя бы было планирование, а в этом одна статистика. Комиссия практически единогласно отвергла этот проект, за исключением меня. Я предложил, учитывая жизненную важность этого дела для страны, признать проект неудовлетворительным, но перейти к разработке технического проекта, поручив это Министерству радиопромышленности, Академии наук СССР, Госплану. С этим не согласились, мое предложение записали как особое мнение и поручили Госплану делать заново экскизный проект.

Госплан потребовал на это два года, а был уже 1966-й. До 1968 года мусолили-мусолили, но абсолютно ничего не сделали. И вместо эскизного проекта подготовили распоряжение Совета Министров СССР о том, что, поскольку очень мудро ликвидировали совнархозы и восстановили отраслевой метод управления, то теперь не о чем заботиться. Нужно, чтобы все министерства создали отраслевые системы, а из них автоматически получится общегосударственная система. Все облегченно вздохнули — ничего делать не надо, и такое распоряжение было отдано. Получился ОГАС — сборная солянка.

В.М.Глушкова вспоминает, что не раз, возвращаясь из Москвы, муж говорил: ужасно угнетает мысль, что никому ничего не нужно.

В эти годы под стекло на столе Глушкова в его домашнем кабинете, к ранее подсунутой записке легла еще одна:

„Сто раз я клятву говорил такую:
Сто лет в темнице лучше протоскую,
Сто гор скорее в ступе истолку я,
Чем истину тупице растолкую“.

Бахвалан Махмуд


Но дело было не столько в „тупицах“, сколько в сознательной дискредитации идей ученого.

Начиная с 1964 года (времени появления моего проекта) против меня стали открыто выступать ученые-экономисты Либерман, Белкин, Бирман и другие, многие из которых потом уехали в США и Израиль. Косыгин, будучи очень практичным человеком, заинтересовался возможной стоимостью нашего проекта. По предварительным подсчетам его реализация обошлась бы в 20 миллиардов рублей. Основную часть работы можно сделать за три пятилетки, но только при условии, что эта программа будет организована так, как атомная и космическая. Я не скрывал от Косыгина, что она сложнее космической и атомной программ вместе взятых и организационно гораздо труднее, так как затрагивает все и всех: и промышленность, и торговлю, планирующие органы, и сферу управления, и т. д. Хотя стоимость проекта ориентировочно оценивалась в 20 миллиардов рублей, рабочая схема его реализации предусматривала, что вложенные в первой пятилетке первые 5 миллиардов рублей в конце пятилетки дадут отдачу более 5 миллиардов, поскольку мы предусмотрели самоокупаемость затрат на программу. А всего за три пятилетки реализация программы принесла бы в бюджет не менее 100 миллиардов рублей. И это еще очень заниженная цифра.

Но наши горе-экономисты сбили Косыгина с толку тем, что, дескать, экономическая реформа вообще ничего не будет стоить, т. е. будет стоить ровно столько, сколько стоит бумага, на которой будет напечатано постановление Совета Министров, и даст в результате больше. Поэтому нас отставили в сторону и, более того, стали относиться с настороженностью. И Косыгин был недовлен. Меня вызвал Шелест и сказал, чтобы я временно прекратил пропаганду ОГАС и занялся системами нижнего уровня.

Вот тогда мы и начали заниматься „Львовской системой“. Дмитрий Федорович Устинов пригласил к себе руководителей оборонных министерств и дал им команду делать все, что говорит Глушков. Причем с самого начала было предусмотрено, чтобы системы делались для всех отраслей сразу, т. е. какой-то зачаток общегосударственности был.

Устинов дал команду, чтобы никого из экономистов не пускали на предприятия. Мы могли спокойно работать. И это сэкономило нам время, дало возможность подготовить кадры. Для выполнения работы был создан ряд новых организаций — институт Шихаева, институт Данильченко и др. — во всех отраслях по институту. Расставили людей и начали потихоньку работать. А Институт кибернетики АН Украины переключился в основном сначала на „Львовскую“, а потом на „Кунцевскую“ системы — занялись „низом“, так сказать.

Для руководства работой в оборонном комплексе был создан межведомственный комитет (МВК) девяти отраслей под руководством министра радиопромышленности П.С. Плешакова и совет директоров головных институтов (СДГИ) оборонных отраслей по управлению, экономике и информатике под руководством Юрия Евгеньевича Антипова, члена военно-промышленной комиссии ВПК. Научным руководителем комитета и совета был В.М. Глушков.

Вспоминая об этом времени, Ю.Е. Антипов пишет:

„Начиная с 1966 г. работа велась таким образом: сначала проблема, связанная с созданием той или иной автоматизированной системы, обсуждалась на СДГИ, потом рассматривалась на МВК, а на заседании ВПК принималось окончательное решение.

По этой схеме реализовались основные идеи, высказанные Глушковым: разработка типовых систем для предприятий и отрасли, создание программных методов планирования и управления, переход к системному проектированию средств передачи и обработки информации, развитие инфраструктур информационной индустрии, проблемы моделирования и управления и др. Я думаю, что В.М.Глушкову повезло в том, что в „оборонке“ нашлись силы для реализации его идей“.

Нашлись они и на Украине. По инициативе Виктора Михайловича решением правительства Украины в Госплане УССР был создан в 1971 г. специальный отдел с достаточно широкими полномочиями, возглавить который был приглашен с одобрения академика Глушкова М.Т. Матвеев. В настоящее время он директор Головного НИИ по проблемам информатики Министерства экономики Украины, доктор экономических наук. Практически это был опорный отдел Глушкова, который, функционируя в Госплане УССР, стал проводником его научной политики. С такой мощной основой отделу удалось в кратчайший срок наладить процесс планомерного внедрения компьютерных технологий в народное хозяйство и начать проектирование и практическое осуществление проектов РАСУ и РСВЦ на Украине. Многие годы до смерти Виктора Михайловича Украина в СССР занимала лидирующие позиции по всей проблематике.

„Роль и заслуги Виктора Михайловича в этом трудно переоценить, — вспоминает о том памятном времени М.Т. Матвеев. — Высокая эффективность работы всех причастных к процессу компьютеризации обусловливалась тем, что Виктор Михайлович любые вопросы разрешал в реальном времени, без задержек; понимание проблематики и способность нахождения путей реализации казалось бы неразрешимых вопросов в реальных условиях у академика были потрясающими: многонедельных и многомесячных ожиданий аудиенций у Виктора Михайловича не практиковалось. Он активно и результативно защищал интересы сферы компьютеризации на самом высоком государственном уровне. Виктор Михаилович был единственным в этом плане не только на Украине, но и в СССР. Подтверждением этому является образовавшийся и усиливающийся застой в этой важнейшей области после его ухода. Я не могу назвать ни одного сколь-нибудь серьезного государственного акта, принятого с тех пор, который бы вдохнул новую жизнь в начатое им дело. Мы, его ученики и единомышленники, хотя и старались в память о нем продвигать дальше его идеи и замыслы, часто, очень часто ощущали невосполнимую его потерю. Глубоко убежден, что он нашел бы выход из сложившейся сейчас совершенно нелогичной и необъяснимой кризисной и опасной ситуации“.

Действительно, в многочисленных научных и публицистических статьях и монографиях В.М. Глушкова высказывалось и разрабатывалось множество идей по совершенствованию системы государственного управления, в частности, созданию более совершенных по сравнению с существующими способов регулирования производственных и социальных процессов, пересмотру разного рода нормативов и разработке механизмов их объективного формирования, созданию технической базы согласования производственных программ в масштабе всей страны, обеспечению руководителей инструментарием для формирования, моделирования и оценки последствий принятых решений (система Дисплан, А.А. Бакаев), по использованию более справедливых распределительных механизмов, созданию такой системы учета, при которой выявлялись бы источники нетрудовых доходов, внедрению системы безденежных расчетов для всего населения и пр. Многие из этих идей, казавшихся в его время слишком революционными, сегодня приобрели новое актуальное звучание.

В конце 60-х годов в ЦК КПСС и Совете Министров СССР появилась информация о том, что американцы еще в 1966 году сделали эскизный проект информационной сети (точнее, нескольких сетей), т. е. на два года позже нас. В отличие от нас они не спорили, а делали, и на 1969 год у них был запланирован пуск сети АРПАНЕТ, а затем СЕЙБАР-ПАНЕТ и др., объединяющих ЭВМ, которые были установлены в различных городах США.

Тогда забеспокоились и у нас. Я пошел к Кириленко и передал ему записку о том, что надо возвратиться к тем идеям, которые были в моем проекте. „Напиши, что надо делать, создадим комиссию“, — сказал он. Я написал примерно такое „Единственное, что прошу сделать, — это не создавать по моей записке комиссию, потому что практика показывает, что комиссия работает по принципу вычитания умов, а не сложения, и любое дело способна загубить“. Но тем не менее комиссия была создана. Председателем назначили В.А. Кириллина (председателя ГКНТ), а меня заместителем.

Комиссия была еще более высокого уровня — с участием министра финансов, министра приборостроения и др. Она должна была подготовить проект решения по созданию ОГАС. И мы должны были вынести эти материалы на рассмотрение Политбюро ЦК КПСС, а Политбюро уже решало, что пойдет на съезд.

Работа началась. И тут я основное внимание уделил уже не столько сути дела, поскольку в проекте она содержалась, сколько механизму реализации ОГАС.

Дело в том, что у Королева или Курчатова был шеф со стороны Политбюро, и они могли прийти к нему и сразу решить любой вопрос. Наша беда была в том, что по нашей работе такое лицо отсутствовало. А вопросы были здесь более сложные, потому что затрагивали политику, и любая ошибка могла иметь трагические последствия. Поэтому тем более была важна связь с кем-то из членов Политбюро, потому что это задача не только научно-техническая, но прежде всего политическая.

Мы предусматривали создание Государственного комитета по совершенствованию управления (Госкомупра), научного центра при нем в составе 10–15 институтов, причем институты уже почти все существовали в то время — нужно было создать заново только один, головной. Остальные можно было забрать из отраслей или Академии наук или частично переподчинить. И должен быть ответственный за все это дело от Политбюро.

Все шло гладко, все соглашались. В это время у же-был опубликован проект директив XXVI съезда, включавший все наши формулировки, подготовленные на комиссии.

На Полибюро дважды рассматривался наш вопрос. На одном заседании была рассмотрена суть дела, с ней согласились и сказали, что ОГАС надо делать. А вот как делать — Госкомупр-ли или что-то другое, — это вызвало споры.

Мне удалось „додавить“ всех членов комиссии, один Гарбузов не подписал наши предложения. Но мы все-таки внесли их на Политбюро.

А когда мы пришли на заседание (а оно, кстати, проходило в бывшем кабинете Сталина), то Кириллин мне шепнул: что-то, мол, произошло, но что — он не знает. Вопрос рассматривался на заседании, без Генерального секретаря (Брежнев уехал в Баку на празднование 50-летия советской власти в Азербайджане), Косыгина (он был в Египте на похоронах АЛасера). Вел заседание Суслов. Вначале предоставили слово Кириллину, потом мне. Я выступил коротко, но вопросов было задано очень много. Я ответил на все. Потом были приглашены заместители Косыгина, выступил Байбаков. Он сказал так: „Смирнов поддержал, и, в общем, все зампреды поддержали наши предложения. Я слышал, что здесь есть возражения у товарища Гарбузова. (министра финансоа — Прим. авт.). Если они касаются увеличения аппарата, то я считаю дело настолько важным, что если Политбюро только в этом усматривает трудность, то пусть мне дадут поручение, как председателю Госплана, и я внесу предложение о ликвидации трех министерств (сократить или объединить) и тогда найдется штат для этого дела“.

К.Б. Руднев (министр ПСА и СУ. — Прим. авт.) откололся. Он, хотя и подписал наш документ, но здесь выступил и сказал, что это, может, преждевременно — как-то так.

Гарбузов выступил так, что сказанное им годится для анекдота. Вышел на трибуну и обращается к Мазурову (он тогда был первым заместителем Косыгина). Вот, мол, Кирилл Трофимович, по вашему поручению я ездил в Минск, и мы осматривали птицеводческие фермы. И там на такой-то птицеводческой ферме (назвал ее) птичницы сами разработали вычислительную машину.

Тут я громко засмеялся. Он мне погрозил пальцем и сказал: „Вы, Глушков, не смейтесь, здесь о серьезных вещах говорят“. Но его Суслов перебил: „Товарищ Гарбузов, вы пока еще тут не председатель, и не ваше дело наводить порядок на заседании Политбюро“. А он — как ни в чем не бывало, такой самоуверенный и самовлюбленный человек, продолжает: „Три программы выполняет: включает музыку, когда курица снесла яйцо, свет выключает и зажигает и все такое прочее. На ферме яйценоскость повысилась“. Вот, говорит, что нам надо делать: сначала все птицефермы в Советском Союзе автоматизировать, а потом уже думать про всякие глупости вроде общегосударственной системы. (А я, правда, здесь засмеялся, а не тогда.) Ладно, не в этом дело.

Было вынесено контрпредложение, которое все снижало на порядок: вместо Госкомупра — Главное Управление по вычислительной технике при ГКНТ, вместо научного центра — ВНИИПОУ и т. д. А задача оставалась прежней, но она техницизировалась, т. е. изменялась в сторону Государственной сети вычислительных центров, а что касалось экономики, разработки математических моделей для ОГАС и т. д. — все это смазали.

Под конец выступает Суслов и говорит: „Товарищи, может быть, мы совершаем сейчас ошибку, не принимая проект в полной мере, но это настолько революционное преображение, что нам трудно сейчас его осуществить. Давайте пока попробуем вот так, а потом будет видно, как быть“. И спрашивает не Кириллина, а меня: „Как вы думаете?“. А я говорю: „Михаил Андреевич, я могу вам только одно сказать: если мы сейчас этого не сделаем, то во второй половине 70-х годов советская экономика столкнется с такими трудностями, что все равно к этому вопросу придется вернуться“. Но с моим мнением не посчитались, приняли контрпредложение.

Ну, и работа закрутилась. Да, а тогда, когда создавалась моя первая комиссия в 1962 году, то одновременно в ГКНТ было создано Главное управление по вычислительной технике. Оно проработало два с лишним года, а потом, когда восстановили министерства и образовалось министерство Руднева, то управление в 1966 году ликвидировали и Руднев забрал оттуда людей к себе в Министерство приборостроения и средств автоматизации. А теперь его воссоздали заново.

Где-то в ноябре меня приглашает Кириленко. Я пришел в его приемную на Старой площади без двух минут десять. Там сидел наш ракетный министр С.А. Афанасьев, которого вызвали на 10.10. Спрашивает меня: „У вас короткий вопрос?“ А я ему отвечаю, что не знаю, зачем меня позвали.



В.М. Глушков (1980 г.)


Захожу первым. Встает Андрей Павлович, поздравляет и говорит: „Назначаешься первым заместителем Кириллина (на то место, которое занимает сейчас Д.Г. Жимерин). Я уже согласовал это с Леонидом Ильичом, он спросил — может, ему поговорить с тобой, но я ответил — не надо, я сам все улажу“. „Андрей Павлович, — отвечаю я ему, — а вы со мной предварительно поговорили на эту тему? А может, я не согласен? Вы же знаете, что я возражал, я считаю, что, в том виде, как оно сейчас принято, решение способно только исказить идею, ничего из этого не получится. И если я приму ваше предложение, то виноваты будем мы с вами: я внес предложение, вы поддержали, меня назначили, дали, вроде, в руки все, — а ничего нет. Вы — умный человек, понимаете, что с таких позиций даже простую ракету сделать нельзя, не то что построить новую экономическую систему управления государством“.

Сели мы, и начал он меня уговаривать. Мол, вы меня ставите в неудобное положение перед Леонидом Ильичом, я ему сказал, что все улажено. А я не поддаюсь. Тогда он перешел на крепкие слова и выражения, а я — все равно. Потом опять на мягкие, опять на крепкие. В общем, в час с лишним он меня отпустил. Так мы ни о чем и не договорились Он даже не попрощался со мной, и мы до XXIV съезда с ним, когда встречались, не здоровались и не разговаривали.

Позднее отношения восстановились. А тогда он своего друга Жиме-рина предложил заместителем Кириллина. А я согласился быть научным руководителем ВНИИПОУ.

Тем временем началась вакханалия в западной прессе. Вначале фактически никто ничего не знал о наших предложениях, они были секретными. Первый документ, который появился в печати, — это был проект директив XXIV съезда, где было написано об ОГАС, ГСВЦ и т. д. Первыми заволновались американцы. Они, конечно, не на войну с нами делают ставку — это только прикрытие, они стремятся гонкой вооружений задавить нашу экономику, и без того слабую. И, конечно, любое укрепление нашей экономики — это для них самое страшное из всего, что только может быть. Поэтому они сразу открыли огонь по мне из всех возможных калибров. Появились сначала две статьи: одна в „Вашингтон пост“ Виктора Зорзы, а другая — в английской Тардиан». Первая называлась «Перфокарта управляет Кремлем» и была рассчитана на наших руководителей. Там было написано следующее: «Царь советской кибернетики академик В.М.Глушков предлагает заменить кремлевских руководителей вычислительными машинами». Ну и так далее, низкопробная статья.

Статья в «Гардиан» была рассчитана на советскую интеллигенцию. Там было сказано, что академик Глушков предлагает создать сеть нычислительных центров с банками данных, что это звучит очень современно, и это более передовое, чем есть сейчас на Западе, но делается не для экономики, а на самом деле это заказ КГБ, направленный на то, чтобы упрятать мысли советских граждан в банки данных и следить на каждым человеком.

Эту вторую статью все «голоса» передавали раз пятнадцать на разных языках на Советский Союз и страны социалистического лагеря.

Потом последовала целая серия перепечаток этих грязных пасквилей в других ведущих капиталистических газетах — и американских, и: шпадноевропейских, и серия новых статей. Тогда же начали случаться странные вещи. В 1970 году я летел из Монреаля в Москву самолетом Ил-62. Опытный летчик почувствовал что-то неладное, когда мы летели уже над Атлантикой, и возвратился назад. Оказалось, что в горючее что-то подсыпали. Слава Богу, все обошлось, но так и осталось загадкой, кто и зачем это сделал. А немного позже в Югославии на нашу машину чуть не налетел грузовик, — наш шофер чудом сумел увернуться.

И вся наша оппозиция, в частности экономическая, на меня ополчилась. В начале 1972 года в «Известиях» была опубликована статья «Уроки электронного бума», написанная Мильнером, заместителем Г. А. Арбатова — директора Института Соединенных Штатов Америки. И ней он пытался доказать, что в США спрос на вычислительные машины упал. В ряде докладных записок в ЦК КПСС от экономистов, побывавших в командировках в США, использование вычислительной техники для управления экономикой приравнивалось к моде на абстрактную живопись. Мол капиталисты покупают машины только потому, что это модно, дабы не показаться несовременными.

Это все дезориентировало руководство.

Да, я забыл сказать, что еще способствовало отрицательному решению по нашему предложению. Дело в том, что Гарбузов сказал Косыгину, что Госкомупр станет организацией, с помощью которой ЦК КПСС будет контролировать, правильно ли Косыгин и Совет Министров в целом управляют экономикой. И этим настроил Косыгина против нас, а раз он возражал, то, естественно, предложение о Госкомупре не могло быть принято. Но это стало известно мне года через два.

А дальше была предпринята кампания на переориентацию основных усилий и средств на управление технологическими процессами. Этот удар был очень точно рассчитан, потому что и Кириленко, и Леонид Ильич — технологи по образованию, поэтому это им было близко и понятно.

В 1972 году состоялось Всесоюзное совещание под руководством Л.П. Кириленко, на котором главный крен был сделан в сторону управления технологическими процессами с целью замедлить работы по АСУ, а АСУ ТП дать полный ход.

Отчеты, которые направлялись в ЦК КПСС, явились, по-моему, умело организованной американским ЦРУ кампанией дезинформации против попыток улучшения нашей экономики. Они правильно рассчитали, что такая диверсия — наиболее простой способ выиграть экономическое соревнование, дешевый и верный. Мне удалось кое-что сделать, чтобы противодействовать этому. Я попросил нашего советника по науке в Вашингтоне составить доклад о том, как «упала» популярность машин в США на самом деле, который бывший посол Добрынин прислал в ЦК КПСС. Такие доклады, особенно посла ведущей державы, рассылались всем членам Политбюро и те их читали. Расчет оказался верным, и это немного смягчило удар. Так что полностью ликвидировать тематику по АСУ не удалось.

«ОГАС погас!» — злословили враги ученого и в СССР и за рубежом.

И все-таки старания Глушкова не пропали даром. Косыгин как-то спросил его: а можно ли увидеть что-нибудь из того, о чем вы постоянно говорите? Глушков порекомендовал ознакомиться с тем, что сделано в оборонной промышленности, в частности, в институте, руководимом И.А. Данильченко, который был тогда главным конструктором по АСУ и внедрению вычислительной техники в оборонную промышленность. Глушков был научным руководителем этих работ и был уверен, что они произведут на Косыгина большое впечатление.

О том, что председатель Совета Министров собирается посетить институт, Данильченко узнал от министра оборонной промышленности С.А. Зверева, позвонившего ему накануне визита. В это время Глушкова в Москве не было. И хотя Данильченко считал, что высоких гостей должен принимать научный, руководитель, он уже не смог ничего сделать. Пришлось ограничиться разговором с Глушковым по телефону.

В десять часов утра в институт приехал Косыгин, министр обороны Устинов, министры основных отраслей промышленности. (Далее я рассказываю со слов Данильченко). Визит дился день — до одиннадцати часов ночи. Данильченко рассказал гостям о типовой АСУ для оборонных предприятий, о только что созданной сети передачи данных, об использовании вычислительной техники на предприятиях оборонных отраслей. Все шло «гладко», чувствовалось, что посетители довольны увиденным и услышанным. Когда визит близился к концу (было девять часов вечера) и, казалось, что он благополучно закончится, Косыгин неожиданно сказал:

— По имеющимся сведениям, в одной из ведущих западных стран подготовлен доклад о производстве и применении вычислительной техники в СССР. Там сказано, что машин у нас меньше и они хуже и в то же время недоиспользуются. Почему это происходит? И правильно ли это?

Данильченко понимал, как много зависит от того, что он скажет, и, пытаясь собраться с мыслями, вспомнил совет Глушкова: в любых ситуациях говорить только правду! — Да! Все это верно! — ответил он. — Причины? — резко спросил Косыгин. — Не соблюдается основной принцип руководителя, выдвинутый академиком Глушковым, — принцип первого лица! Руководители страны психологически не воспринимают ЭВМ, и это самым отрицательным образом влияет на развитие и использование вычислительной техники в стране!

Косыгин внимательно слушал, остальные молчали, поглядывая то на председателя Совета Министров, то на ответчика. Данильченко — по званию он был генералом, — словно рапортуя, продолжал: — Главная задача — преодолеть психологический барьер в высшей сфере руководства. Иначе ни Глушков, ни я, никто другой ничего не сделает. Надо обучить верхние эшелоны власти вычислительной технике, показать ее возможмости, повернуть руководителей лицом к новой технике. Академик Глушков писал об этом в ЦК КПСС и Совет Министров СССР, но безрезультатно. Он просил меня сказать об этом!

А.Н. Косыгин спокойно выслушал глубоко взволнованного Данильченко и, не подводя никаких итогов, попрощался и уехал, захватив с собой министра оборонной промышленности Зверева. Остальные решили подождать каких-либо известий о реакции Косыгина.

В половине двенадцатого ночи позвонил Зверев и попросил к телефону Устинова. — Косыгин очень доволен встречей, — сказал он, — теперь будут большие перемены!

И они действительно начались. Вначале была организована, специальная школа, преобразованная через три месяца в Институт управления народным хозяйством.

В первом составе слушателей были союзные министры, во втором — министры союзных республик, после них — их заместители и другие ответственные лица. Лекции на первом потоке открыл Косыгин. Он же присутствовал на выпуске слушателей школы, которым, кстати сказать, пришлось сдавать настоящие экзамены. Лекции читались Глушковым, другими ведущими учеными страны.

И дело пошло! Принцип «первого лица» Глушкова сработал!

Министры, разобравшись, в чем дело, сами стали проявлять инициативу. Многое было сделано. Но когда Косыгина не стало, «принцип первого лица» снова сработал, на этот раз в обратную сторону.

Во время подготовки XXV съезда КПСС была предпринята попытка вообще изъять слово «ОГАС» из проекта решения. Я написал записку в ЦК КПСС, когда был уже опубликован проект «Основных направлении», и предложил создавать отраслевые системы управления с последующим объединением их в ОГАС. И это было принято.

При подготовке XXVI.съезда было то же самое. Но мы лучше подготовились: передали материалы в комиссию, которая составляла речь Брежнева (отчетный доклад). Я заинтересовал почти всех членов комиссии, самый главный из тех кто готовил речь, — Цуканов — съездил в институт к Данильченко, после чего он обещал наши предложения проталкивать. Вначале хотели их включить в речь Брежнева на Октябрьском (1980) пленуме ЦК КПСС, потом пытались включить в отчетный доклад, но он оказался и так слишком длинным, пришлось многое выкинуть. Тем не менее в отчетном докладе про вычислительную технику было сказано больше, чем хотели вначале.

Мне посоветовали развернуть кампанию за создание ОГАС в «Правде». Редактор этой газеты, бывший управленец, меня поддержал. И то, что моей статье дали заголовок «Дело всей страны» (статья в «Правде» называлась «Для всей страны». — Прим. авт.), вряд ли было случайностью. «Правда» — орган ЦК КПСС, значит, статью там обсуждали и одобрили…

Рассказ об ОГАС был записан дочерью Ольгой 11 января 1982 года. После статьи а газете «Правда» у ученого появилась надежда, что ОГАС, наконец, станет делом всей страны. Не это-ли заставило тяжелобольного человека держаться и диктовать последние строки?

В этот день к нему в реанимационную палату пришел помощник министра обороны СССР Устинова и спросил — не может ли министр чем-либо помочь?

Ученый, только что закончивший рассказ о своем «хождении по мукам», не мог не помнить о той стене бюрократии и непонимания, которую так и не сумел протаранить, пытаясь «пробить» ОГАС. «Пусть пришлет танк!» — гневно ответил он, обложенный трубками и проводами от приборов, поддерживающих едва теплящуюся жизнь. Мозг его был ясен^ и в эти тяжелые минуты, но терпению переносить душевные и физические муки уже приходил конец…

История подтвердила, что слова В.М. Глушкова о том, что советская экономика в конце 70-х годов столкнется с огромными трудностями, оказались пророческими.

До конца жизни он оставался верным своей идее создания ОГАС, реализация которой могла бы спасти хиреющую экономику. Может, он был безнадежным мечтателем? Ученым-романтиком? История еще скажет свое последнее слово. Отметим лишь, что «отрицатели» его идей на Западе пошли его путем и сейчас не стесняются ссылаться на то, что осуществляют его замыслы. Выходит, прав был ученый, говоря о причинах обрушившейся на него критики в зарубежных средствах информации!

Его рассказ о борьбе за создание ОГАС — это обвинительный акт в адрес руководителей государства, не сумевшим в полной мере использовать могучий талант ученого. Если бы только Глушкова! Нет сомнения, что это одна из важных причин, по которым великая страна споткнулась на пороге XXI века, надолго лишив миллионы людей уверенности в завтрашнем дне, в достойном будущем своих детей, веры в то, что они жили, живут и будут жить не зря.

«Наличие планового хозяйства в бывшем СССР позволило создать самую эффективную систему управления экономикой. Понимая это, В.М. Глушков и сделал ставку на ОГАС. По оценке специалистов, существовавшая в СССР система управления была втрое дешевле американской, когда США имели такой же валовой национальный продукт. Неприятие ОГАС было стратегической ошибкой нашего руководства, нашего общества, так как создание ОГАС давало уникальную возможность объединить информационную и телекоммуникационную структуру в стране в единую систему, позволявшую на новом научно-техническом уровне решать вопросы экономики, образования, здравоохранения, экологии, сделать доступными для всех интегральные банки данных и знаний по основным проблемам науки и техники, интегрироваться в международную информационную систему.

Реализацию ОГАС в годы жизни В.М. Глушкова могла бы вывести страну на новый уровень развития, соответствующий постиндустриальному обществу.

Помешали созданию ОГАС некомпетентность высшего звена руководства, нежелание среднего бюрократического звена работать под жестким контролем и на основе объективной информации, собираемой и обрабатываемой с помощью ЭВМ, неготовность общества в целом, несовершенство существовавших в то время технических средств, непонимание, а то и противодействие ученых экономистов новым методам управления». (Из письма, полученного автором от Ю.Е. Антипова.)

Можно соглашаться и не соглашаться с одним из ярких представителей командно-административной системы, сторонника Глушкова в борьбе за ОГАС, но ясно одно: Глушков был безусловно прав, ставя задачу информатизации и компьютеризации страны. Но в тех условиях он не мог что-либо сделать без крупномасштабного решения правительства и ЦК КПСС, которое и стало барьером на его пути. Ясно и то, что ученый опередил время: государство и общество не были готовы к восприятию ОГАС. Это обернулось трагедией для ученого, не желавшего смириться с непониманием того, что для него было абсолютно очевидным.

Утром 30 января на глазах у находившихся в палате И.А. Данильченко и Ю.А. Михеева голубые всплески на экране монитора, фиксировавшего работу сердца, вдруг исчезли, их сменила прямая линия, — сердце ученого перестало биться…

Для заключительной оценки личности В.М. Глушкова лучше всего подходят слова президента Национальной академии наук Украины Б.Е. Патона:

«В.М. Глушков — блестящий, истинно выдающийся ученый современности, внесший огромный вклад в становление кибернетики и вычислительной техники в Украине и бывшем Советском Союзе, да и в мире в целом.



Б.Е. Патон, А.П. Александров, В.М. Глушков (70-е гг.)


В.М. Глушков как мыслитель отличался широтой и глубиной научного видения, своими работами предвосхитил многое из того, что сейчас появилось в информатизированном западном обществе.

Виктор Михайлович обладал огромными разносторонними знаниями, а его эрудиция просто поражала всех с ним соприкасавшихся. Вечный поиск нового, стремление к прогрессу в науке, технике, обществе были замечательными его чертами.

В.М. Глушков был подлинным подвижником в науке, обладавшим гигантской работоспособностью и трудолюбием. Он щедро делился своими знаниями, идеями, опытом с окружающими его людьми.

В.М. Глушков внес большой вклад в развитие АН Украины, будучи с 1962 года ее вице-президентом. Он существенно влиял на развитие научных направлений, связанных с естественными и техническими науками. Велик его вклад в компьютеризацию и информатизацию науки, техники, общества.

Виктора Михайловича смело можно отнести к государственным деятелям, отдававшим всего себя служению Отечеству, своему народу. Его знали и уважали люди во всех уголках Советского Союза. Он не жалел сил для пропаганды достижений науки, научно-технического прогресса, общался с учеными многих зарубежных стран. Его работы и достижения руководимого им Института кибернетики АН Украины были хорошо известны за рубежом, где он пользовался заслуженным авторитетом.

Хорошо понимая значение укрепления обороноспособности своей страны, В.М. Глушков вместе с руководимым им институтом выполнил большой комплекс работ оборонного значения. И здесь он всегда вносил свое, новое, преодолевая многочисленные трудности, а иногда и простое непонимание. Он действительно болел за страну, ей и науке отдал свою замечательную жизнь».

Флагману кибернетики — большого плавания!

Директором осиротевшего института был назначен Владимир Сергеевич Михалевич, бывший первый заместитель В.М. Глушкова.



Анатолий Алексеевич Морозов, директор Института математических машин и систем



Филипп Илларионович Андон, директор Института программных средств



Иван Васильевич Сергиенко, директор отделения математической кибернетики и математического обеспечения



Александр Васильевич Палагин, директор отделения вычислительной техники и микроэлектроники


Глушков высоко ценил Михалевича за его блестящие математические способности, широкий кругозор, умение работать с людьми.

Михалевич начал работу в отделе Глушкова, затем стал заведующим отдела экономической кибернетики Вычислительного центра АН Украины, а с 1962 г. — первым заместителем директора.

Им опубликовано более двухсот научных работ по информатике, теоретической, экономической кибернетике, теории оптимальных решений и численным методам оптимизации. Он стал известен в стране и за рубежом как руководитель украинской школы оптимизации, является председателем Совета Международного института прикладного системного анализа (Австрия). О его плодотворной деятельности говорят полученные им награды: премия АН Украины имени Н.М. Крылова, Государственная премия Украины, Государственная премия СССР, премия Совета Министров СССР, премия АН Украины имени RM. Глушкова. Он награжден орденами Трудового Красного Знамени, Октябрьской революции, орденом Кирилла и Мефодия.

Под руководством нового директора в Институте кибернетики имени В.М. Глушкова АН Украины продолжались работы по созданию и эффективному использованию современной вычислительной техники в решении крупных комплексных проблем информатики и автоматизации на Украине.

Была завершена работа по созданию макроконвейерной ЭВМ (В.М. Глушков, В.С. Михалевич, Ю.В. Капитонова, А.А. Летичевский, С.Б. Погребинский и др.). В 1986 году многие ученые и инженеры института активно участвовали в ликвидации последствий аварии на Чернобыльской АЭС и продолжают эту работу в настоящее время. Была создана специальная ситуационная комната с большим экраном, управляемым от уникальной мегамини-ЭВМ «Дельта», с помощью которой оценивалась миграция радионуклидов в бассейне Днепра (В.С. Михалевич, А.А. Морозов, М.И. Дианов, В.И. Дианов, Ю.И. Самойленко. Н.Д. Чепурной и др.). Для авиационного завода в Ульяновске разработана и введена в эксплуатацию одна из самых сложных и совершенных в бывшем Советском Союзе систем управления производством (ВЛ. Скурихин, А.А. Морозов и др.). В Верховном Совете Украины смонтирована и прекрасно работает электронная система для подсчета результатов голосования. На Киевском заводе им. Петровского запущена гибкая автоматическая линия — технологический- робот (А.А. Морозов и др.). Все работы — а их очень много — я не буду перечислять. Это не входит в мою задачу, хочу сказать о другом, очень важном в наше переменчивое время.

Колоссальное разнообразие областей применения ЭВМ привело к расчленению кибернетики на более узкие направления — информатику, теорию искусственного интеллекта, робототехнику и др. В.М. Глушков предвидел этот процесс и всячески содействовал ему, понимая, что кибернетика, как и всякая новая наука, пройдя стадию общего развития, переродится в семейство взаимосвязанных более узконаправленных наук.



Виктор Леонидович Волкович, директор отделения систем управления



Владимир Ильич Гриценко, директор отделения информационных технологий и систем


Не случайно в середине 70-х годов у него возникла мысль развернуть Институт кибернетики в Кибернетический центр АН Украины, состоящий из нескольких институтов: теоретической кибернетики, вычислительной техники, технической кибернетики, учебного центра, несколь

ких конструкторских бюро и опытного завода микроэлектроники. Тогда этот замысел не был осуществлен.

В 1993 году идея Глушкова была реализована — создан Кибернетический центр в составе Института кибернетики имени В.М. Глушкова, Института проблем математических машин и систем, Института программных систем, Учебного центр и Опытного производства. Генеральным директором центра назначен В.С. Михалевич.

Институт кибернетики имени В.М, Глушкова является головной организацией Кибернетического центра и состоит из четырех отделений: математической кибернетики и математического обеспечения, вычислительной техники и микроэлектроники, систем управления, информационных технологий и систем.

Сейчас в Кибернетическом центре работает более ста докторов наук, более полутысячи кандидатов наук, многие сотни высококвалифицированных инженеров, техников, лаборантов.

Даже краткое перечисление подразделений Кибернетического центра показывает его уникальность и огромные потенциальные возможности для дальнейшего развития информатики и вычислительной техники — наиболее актуальных направлений современной науки.

Казалось бы, мечта В.М. Глушкова осуществилась и остается пожелать флагману кибернетики на Украине — единственному в Европе и в мире Кибернетическому центру — большого плавания!

А меня не покидает чувство тревоги. Заботы о разрушающейся экономике все больше и больше отодвигают на задний план вопросы информатизации и компьютеризации. Более того, созданный за многие годы мощный научный и значительный промышленный потенциал в Украине (более сорока (!) предприятий, Выпускающих средства вычислительной техники, микроэлектроники, средств передачи информации и т. п.), который мог бы служить прочной базой современной индустрии информатики, становится объектом размышлений для некоторых недальновидных политиков, — а нужен ли он?!

От имени ученых и с глубокой уверенностью, что то же самое сказал бы В.М. Глушков, я утверждаю: нужен, очень нужен! Без него Украина не сможет стать цивилизованной страной, окажется в положении отсталого государства, лишенного важнейшей отрасли, определяющей научно-технический прогресс, уровень культуры и, наконец, обороноспособность страны!

2 декабря 1994 года после второго инфаркта перестало биться сердце В. С. Михалевича, сменившего В.М. Глушкова.

Удастся ли флагману кибернетики, лишившемуся капитана, благополучно преодолеть штормы и подводные рифы в бурном море разрушительной перестройки?

Вряд ли кто-нибудь сейчас даст ответ на этот тревожный вопрос.

И все-таки хотелось бы надеяться, что 24 августа 2023 года, в день столетия со дня рождения В.М. Глушкова, нашим наследникам не придется краснеть ни за нас, ученых, ни за государственных мужей, определяющих дальнейшую судьбу Украины.


Славная триада

«Никто для первых не вбивает вех,

И нет для них в истории примера.»

Э. Асадов

Пионер вычислительной техники

На одном из заседаний Президиума Академии наук СССР, проведенном в 1939 году, был заслушан доклад тридцатисемилетнего доктора технических наук Исаака Семеновича Брука о механическом интеграторе, позволяющем решать дифференциальные уравнения до 6-го порядка, созданном под его руководством в лаборатории электросистем Энергетического института АН СССР. Доклад вызвал большой интерес, — подобных вычислительных машин в СССР еще не было, только в США и Англии имелось по одному образцу.

Ученый решил сложную техническую задачу, — одних зубчатых колес в интеграторе имелось более тысячи! Его стойки с многочисленными перемычками и отверстиями для осей зубчатых колес занимали зал площадью около 60 квадратных метроа Набор задачи, состоявший в установке шестеренок на определенные места, занимал от нескольких суток до нескольких недель. По современной классификации механический интегратор И.С. Брука — аналоговая вычислительная машина.

В том же году Брука избрали членом-корреспондентом АН СССР. Сделанный им доклад, вероятно, способствовал такому ходу событий. Однако главными работами Брука к этому времени были его выдающиеся исследования в области электроэнергетики.

Интерес к автоматизации вычислений возник у И.С. Брука не случайно. Занимаясь вопросами электроэнергетики, он, как и С.А. Лебедев, остро чувствовал необходимость создания вычислительных средств для обеспечения своих исследований, требующих сложных рассчетов.

Схожесть биографий этих двух замечательных ученых поразительна. Оба родились в один год, учились в одном институте, «становились на ноги» как ученые в одной научной организации, оба занимались вопросами энергетики, от нее шли к вычислительной технике, оба стали руководителями ведущих научных школ в области цифровых вычислительных машин.

К именам обоих приложимо определение — первые.

Наиболее характерной чертой творчества И.С. Брука в области вычислительной техники является пионерский характер его работ. Он первым в СССР (совместно с Б.И. Рамеевым) разработал проект цифровой электронной вычислительной машины с жестким программным управлением (август 1948 г.). В это время машина подобного типа имелась лишь в США («Эниак», 1946 г.). Они же с Рамеевым получили первое в СССР свидетельство об изобретении цифровой ЭВМ (с общей шиной), датируемое декабрем 1948 г. К сожалению, и проект и изобретение не были своевременно реализованы на практике.

И.С. Брук первым выдвинул и осуществил идею создания малых вычислительных машин для использования в научных лабораториях.

Под его руководством в 1950–1951 гг. была создана первая в Российской федерации малая цифровая электронная вычислительная машина с хранимой в памяти программой M-I, содержащая 730 электронных ламп (вместо 6000 в МЭСМ). Запущенная в опытную эксплуатацию в начале 1952 г, она оказалась единственной в Российской федерации действующей ЭВМ.



В M-I впервые вместо электронных ламп (диодов) были использованы полупроводниковые (купроксные) выпрямители, рулонный телетайп, рассчитанный на печать длинной строки (вместо ленточного на одно число в строке), впервые была применена двухадресная система команд.


Вместе с тем неудержимое стремление быть впереди всех, постоянно иметь новые и новые результаты часто мешало ученому доводить начатое дело до конца. Не случайно только третья разработанная под его руководством ЭВМ стала выпускаться промышленностью. Разработка ЭВМ была вызвана скорее желанием проявить свои творческие способности еще в одной новой и актуальной области науки и техники, нежели являлась основополагающим направлением деятельности ученого. «Работа над ЭВМ M-I в ЭНИН АН СССР в лаборатории электросистем велась „полулегально“, сегодня сказали бы, что это было хобби руководителя работ и только». (Из воспоминаний бывшего участника работ А.Б. Залкинда.) В эти же годы Брук активно продолжал исследования в области энергетики, выдвинул проблему управляющих машин и много сделал для их применения на электрических станциях, увлекался проблемой управления в экономике и пр. В итоге в дальнейшем он передал эстафету развития вычислительных средств своим замечательным ученикам — Николаю Яковлевичу Матюхину и Михаилу Александровичу Карцеву. Однако, если учесть весь комплекс работ, проведенных Бруком и его учениками, то, как будет видно из дальнейшего, вклад его научной школы и научных школ его учеников в компьютеростроение был очень значителен. Развернувшееся с самого начала негласное творческое соревнование двух ведущих научных школ С.А. Лебедева и И.С. Брука стимулировало научные коллективы, не давало возможности успокоиться на достигнутом. Сравнить полученные результаты и определить «победителей» вряд ли возможно. Ясно одно: выиграла наука, научно-технический прогресс.

И.С. Брук родился 8 ноября 1902 года в Минске в бедной еврейской семье служащего табачной фабрики. В 1920 году окончил реальное училище, а в 1925 году — электротехнический факультет МВТУ им. Н.Э. Баумана в Москве. Еще будучи студентом включился в научную деятельность, — его дипломная работа была посвящена новым способам регулирования асинхронных двигателей. После окончания МВТУ его направили во Всесоюзный электротехнический институт им. В.И. Ленина, где он получил большой практический опыт: участвовал в разработке новой серии асинхронных двигателей, выезжал в Донбасс для налаживания параллельной работы электростанций.

«Способности и интерес к технике он унаследовал от отца, — вспоминает сестра Исаака Семеновича Мирра Семеновна Брук (кандидат искусствоведения, живет в Москве. — Прим. авт.). Учась в Минском реальном училище он особенно увлекался точными науками — математикой, физикой, техникой. В учебных лабораториях ему иногда отдавали отработанные старые приборы. На заводе „Энергия“, куда стал приходить Исаак, мастера, видя исключительную любознательность мальчика к технике, объясняли ему устройство машин и станков, отдавали некоторые старые детали.

Брат много читал, любил произведения Жюля Верна, Джека Лондона, Фенимора Купера. Увлекался астрономией и мне дал читать „Стеллу“ Фламариона. Он хорошо рисовал, собирал репродукции картин. Из моего репертуара (я училась в музыкальной школе) любил слушать сочинения Бетховена, Чайковского, Грига».

В 1930 г. Брук переехал в Харьков, где на одном из заводов под его руководством были разработаны и построены несколько электрических машин новой конструкции, в том числе взрывобезопасные асинхронные двигатели. В 1935 г. он возвратился в Москву и поступил на работу в Энергетический институт АН СССР (ныне ЭНИН им. Кржижановского). В его личном деле сохранилось рекомендательное письмо директору ЭНИНа академику Г.М. Кржижановскому от академика К.И. Шенфера — крупнейшего специалиста в области электрических машин. Зная Брука по работе в ВЭИ, Шенфер рекомендовал его как «блестящего экспериментатора и талантливого научного работника и инженера». В заявлении при поступлении на работу в ЭНИН И.С. Брук написал, что хотел бы заниматься вопросами компенсации реактивной мощности дальних линий электропередач. В организованной им лаборатории электросистем он развертывает исследования по расчету режимов мощных энергосистем. Для моделирования сложных электросетей в лаборатории создается расчетный стол переменного тока — своеобразное специализированное вычислительное устройства За эти работы в мае 1936 г. Бруку была присвоена ученая степень кандидата технических наук без защиты диссертации, а в октябре того же года он защитил докторскую диссертацию на тему «Продольная компенсация линий электропередач».

В предвоенные годы он увлекся созданием механического интегратора. Успешное завершение этой работы способствовало избранию его в члены-корреспонденты АН СССР, о чем упоминалось выше. В годы Великой Отечественной войны, продолжая исследования в области энергетики, И.С. Брук успешно работал над системами управления зенитным огнем, изоорел синхронизатор авиационной пушки, позволяющий стрелять через вращающийся пропеллер самолета. В 1947 г. его избрали действительным членом Академии артиллерийских наук. В первые послевоенные годы под его руководством велись исследования по статической устойчивости энергосистем. Разрабатывалась аппаратура регулирования частоты и активной мощности для крупнейших электростанций страны. Продолжали развиваться работы по аналоговым вычислительным устройствам. Был создан электронный дифференциальный анализатор «ЭДА» (главный конструктор Н.Н. Ленов), предназначенный для интегрирования уравнений до 20-го порядка.

Заинтересовавшись появившимися в конце 40-х годов зарубежными публикациями о цифровых вычислительных машинах, Брук становится активным участником научного семинара, обсуждавшего вопросы автоматизации вычислений (создан при Президиуме АН СССР в конце войны по инициативе ученого секретаря Академии академика Н.Г. Бру-евича). В 1947 г. на семинаре был поднят вопрос о создании специального института вычислительной техники. Благодаря активной поддержке президента Академии СИ. Вавилова в июле 1948 года в Академии наук СССР был создан Институт точной механики и вычислительной техники. Исполняющим обязанности директора был назначен Бруевич. Казалось бы, Брук со своей лабораторией как пионер вычислительной техники должен был войти в состав нового института. К этому времени в его распоряжении уже был проект цифровой ЭВМ, составленный им и Рамеевым, ими же были разработаны «Проектные соображения по организации лаборатории при Институте точной механики и вычислительной техники для разработки и строительства электронной цифровой вычислительной машины». Но…

Сегодня трудно установить, почему этого не случилось. Причин могло быть несколько. Во-первых, вначале, кроме названия, у института практически ничего не было — ни здания, ни оборудования. Во-вторых, руководитель нового института академик Н.Г.Бруевич не был сторонником развития электронных цифровых машин, поскольку сам был механиком и делал ставку на развитие механических вычислительных устройств.

Не исключено, в третьих, что повлияла и недооценка Бруком сложности создания ЭВМ. Считая, что проект, составленный им и Рамеевым, это уже значительный или даже главный шаг в достижении цели, он, вероятно, надеялся создать ЭВМ силами своей лаборатории. И жестоко просчитался.

В 1949 г. Рамеева призвали в армию. Брук остался без единственного исполнителя. Составленный проект цифровой электронной ЭВМ так и остался на уровне проекта, став достоянием истории- Тем не менее Брук не оставил своих честолюбивых замыслов. Его эмоциональная натура безусловно подогревалась сведениями о начале работ по созданию ЭВМ в ИТМ и ВТ АН СССР, которые развернулись с приходом в институт М.А. Лаврентьева, а затем С.А. Лебедева, и в СКБ-245, где появился Рамееа

В январе 1950 г. И.С. Брук обратился в отдел кадров Московского энергетического института с просьбой направить к нему способных молодых специалистов, кончающих радиофакультет. В те годы они были нарасхват и направлялись в основном в закрытые организации, выполнявшие ответственные правительственные постановления. Не имея (и не желая иметь) таковых, чтобы не связывать руки и иметь возможность вести интересующие его исследования, И.С. Брук мог рассчитывать лишь на тех, кого не посылали в закрытые организации по причинам «пятен» в биографии (но отнюдь не из-за нехватки таланта).

Так оно и получилось. В марте 1950 г. отдел кадров МЭИ направил к нему в лабораторию «сына врага народа» Николая Яковлевича Матюхина, получившего диплом с отличием за блестящую учебу и участие в научных исследованиях еще на студенческой скамье, но не прошедшего кадровую комиссию при поступлении в аспирантуру.

О том, сколь удачным для лаборатории было такое пополнение в единственном лице, говорит тот факт, что уже в апреле, т. е. всего через два месяца И.С. Брук, уверовавший в талант новообретенного помощника, оформляет постановление президиума АН СССР о разработке цифровой электронной вычислительной машины, получившей впоследствии название М-1.

Вначале молодой специалист в области радиотехники не представлял, что такое ЭВМ. Ему не сразу стало понятным первое задание руководителя — спроектировать важный узел ЭВМ, дешифратор, да еще безламповый. Исаак Семенович сам подобрал для него необходимую литературу, многократно беседовал с приглянувшимся ему новичком, подробно рассказал о принципах работы ЭВМ, двоичной системе счисления, численных методах вычислений. Он же подбросил ему очень важную идею — использовать для построения логических элементов вместо электронных ламп поступившие по репарациям немецкие купроксные выпрямители. Сейчас, когда нет ни Брука, ни его любимого ученика, вряд ли кто-нибудь может сказать, каким образом проводилась ими последующая разработка структуры и архитектуры ЭВМ М-1. Можно лишь утверждать, со слов остальных участников создания машины, что Н.Я. Матюхин фактически был главным конструктором М-1, формально не являясь таковым, а И.С. Брук в полной мере выполнил роль научного руководителя разработки.

ЭВМ М-1, М-2, М-3 и их создатели

Быстро разобравшись в структуре и архитектуре ЭВМ, Н.Я. Матюхин занялся детальной разработкой арифметико-логического устройства, а также узлом управления памятью на магнитном барабане. Вскоре у него появились первые помощники.

В сентябре 1950 г. в лабораторию направили на дипломное проектирование Тамару Миновну Александриди. Ее «подбросил» отдел кадров МЭИ, зная, что И.С. Брук берет на работу молодых специалистов не по анкете, а учитывая их способности. У Александриди, кстати, не было в биографии ничего порочащего, скорее наоборот. Но фамилия… Она настораживала, и чиновники решили не рисковать. Хотя кому как не им было хорошо известно, какой тяжелый путь по дорогам войны прошла эта девушка. Но об этом — позже.

Брук сразу же подключил ее к разработке ЭВМ и предложил заняться устройством памяти — электронным или магнитным. Тамара выбрала электронное. Тогда Исаак Семенович предложил ей исследовать возможности создания памяти на электронно-лучевых трубках, используемых в осциллографах. Первое время ее как дипломницу опекал сотрудник лаборатории Вячеслав Васильевич Карибский. Вряд ли Брук ожидал, что дипломный проект студентки станет частью отчета по ЭВМ М-1 (к женщинам он питал недоверие).

Поздней осенью 1950 г. в лаборатории появился студент последнего курса радиотехнического факультета МЭИ, принятый на работу по совместительству, Михаил Александрович Карцев. И.С. Брук-привлек его к разработке устройства управления ЭВМ М-1 (главного программного датчика) — самой сложной части машины. Одновременно Карцев готовил дипломный проект, посвященный вопросам использования кода Хемминга. Этот код, повышающий надежность передачи информации, был использован им при разработке устройства управления М-1.

Молодым специалистам помогали техники Лев Михайлович Журкин (разработка ЗУ на магнитном барабане), Юрий Васильевич Рогачев (электромонтаж, наладка), Рене Павлович Шидловский (электромонтаж, наладка).

В 1951 г. появилось подкрепление — окончивший МЭИ в феврале 1950 г. Александр Борисович Залкинд (участвовал в отладке арифметического устройства, разработал устройства ввода-вывода) и Игорь Александрович Коколевский (инженер-конструктор, спроектировавший каркас ЭВМ М-1).

Для небольшой группы молодых еще «не оперившихся» специалистов создание ЭВМ явилось безусловно сверхтрудной задачей, хотя они, возможно, к счастью, не понимали этого. Подобные работы лишь развертывались в стране и в мире. К тому же, вследствие характера руководителя им приходилось работать в полном отрыве от других организаций.

Помещение, где ютилась лаборатория, не было приспособлено для таких масштабных работ как создание ЭВМ с использованием многих сотен электронных ламп. Мешала и постоянная нехватка комплектующих изделий. Выручали энергия и находчивость И.С. Брука. Он предложил использовать полученную по репарациям немецкую электронику — купроксные выпрямители и надежные пентоды (аналоги советских электронных ламп 6Ж4); в качестве средств запоминания — доступные и дешевые осциллографические трубки, а для ввода-вывода данных — немецкий рулонный армейский телетайп. Не зря говорят — нет худа без добра. Так получилось и здесь, — ЭВМ М-1 стала первой отечественной малогабаритной машиной с использованием полупроводниковых элементов и памятью на обычных осциллографических трубках!

Молодежный коллектив лаборатории был полон энтузиазма. Работали с утра до позднего вечера, вдохновенно, воодушевленные мыслью первыми сделать электронную цифровую ЭВМ, открывающую новую эру в научно-техническом прогрессе.

Н.Я. Матюхин жил на окраине Москвы вместе с матерью в маленькой комнатке, площадью 5 кв. м, едва вмещавшей стол и две кровати. Увлеченный работой, он заканчивал ее в полночь, когда уже не было смысла да и сил ехать домой. Оставался ночевать в лаборатории. И так продолжалось месяцами. Не лучшее положение было у М.А. Карцева. К тому же, учась в институте, он подхватил туберкулез. Наверное, работа не была бы такой плодотворной, если бы не всеобщее увлечение спортом. Этому отдавались целиком в воскресные дни — устраивали походы на Истринское водохранилище. Рядом с лабораторией соорудили площадку для волейбола и азартно играли в редкие перерывы.

Меньше чем через полтора года М-1 заработала! А ведь ее созданием занимались всего девять сотрудников лаборатории, не имевших ученых степеней (за исключением И.С. Брука). Если вспомнить условия, в которых они трудились, то это можно оценить как замечательный творческий порыв молодого коллектива. У разработчиков М-1 сохранился отчет «Автоматическая вычислительная машина М-1», утвержденный директором Энергетического института АН СССР академиком Г.М. Кржижановским 15 декабря 1951 г. Этот документ, вошедший в историю вычислительной техники, составили руководитель лаборатории электросистем член-корр. АН СССР И.С. Брук и исполнители работы младшие научные сотрудники Т.М. Александриди, А.Б. Залкинд, М.А. Карцев, Н.Я. Матюхин, техники Л.М. Журкин, Ю.В. Рогачев, Р.П. Шидловский (см. Приложение 4).

М.А. Карцев, вспоминая о времени создания ЭВМ М-1, говорил:

«В 1950 году в лабораторию электросистем Энергетического института АН СССР им. Г.М. Кржижа новского, которую возглавлял в то время член-корр. АН СССР Исаак Семенович Брук, начали собираться первые молодые люди для того, чтобы поднимать советскую вычислительную технику. Первым дипломированным специалистом среди нас был Николай Яковлевич Матюхин — ныне член-корреспондент Академии наук СССР, а тогда молодой специалист, окончивший Московский энергетический институт весной 1950 года. Ему помогали несколько дипломников из МЭИ. А я, инженер-недоучка, студент пятого курса МЭИ, поступил по совместительству. После демобилизации пришел к нам монтажник Юрий Васильевич Рогачев, ныне лауреат Государственной премии СССР, кандидат технических наук, главный инженер института. Был распределен к нам в качестве молодого специалиста окончивший техникум Рене Павлович Шидловский, ныне заместитель главного конструктора, начальник одного из ведущих отделов института, лауреат Государственной премии СССР. Всего нас было человек десять. Никто из нас до прихода в лабораторию электросистем ЭНИНа не только не был специалистом по вычислительной технике, но даже не знал, что может существовать электронная вычислительная машина и что такое вообще возможно. Такими-то силами мы начали делать одну из первых советских вычислительных машин — М-1. Может быть это было нахальством с нашей стороны, но уж халтурой точно не было.

В начале 1950 года среди имущества, привезенного с трофейного склада, была обнаружена странная деталь (не могу сказать точно, кем была сделана эта находка, может быть Бруком, может быть, Матюхиным, может быть, Рамеевым, который ранее работал у нас). Ее назначения и происхождения долго никто не мог понять, пока не сообразили, что это — миниатюрный купроксный выпрямитель. Эта деталь была по достоинству оценена, и М-1 стала первой в мире ЭВМ, в которой все логические схемы были сделаны на полупроводниках.

Летом 1951 года, примерно одновременно с машиной МЭСМ, заработала и машина М-1 (Карцев имеет в виду, что ЭВМ М-1 стала выполнять в полуавтоматическом режиме основные арифметические операции. Комплексная отладка машины завершилась к концу года. Со слов разработчиков, эксплуатация М-1 началась в январе 1952 г. В книге „Быстродействующая вычислительная машина М-2“ под редакцией И.С. Брука, изданной в 1957 г., указана другая дата: весна 1952 г. Официальный документ о вводе в эксплуатацию ЭВМ М-1 отсутствует. — Прим. авт.). Первые задачи, которые решались на ЭВМ М-1, ставились академиком Сергеем Львовичем Соболевым, который в то время был заместителем по научной работе у академика Курчатова. На это чудо техники, которое давало 15–20 не тысяч, не миллионов, а 15–20 операций в секунду над 23-разрядными числами и имело память емкостью в 256 слов, приезжали смотреть и президент Академии наук СССР А.Н. Несмеянов и многие видные советские ученые и государственные деятели» (из выступления на торжественном заседании коллектива основанного М.А. Карцевым Научно-исследовательского института вычислительных комплексов Минрадиопрома СССР, посвященного 15-летию его образования).

Такой интерес к новорожденному детищу И.С. Брука вполне объясним. В столице СССР других действующих ЭВМ не было В ИТМ и ВТ АН СССР еще шел монтаж БЭСМ; ЭВМ «Стрела» в СКВ. 245 находилась примерно в таком же состоянии.

Бывший техник-монтажник лаборатории электросистем Ю.В. Рогачев (впоследствии, после смерти М.А. Карцева, в 1984 г. он сменил его на посту директора Института вычислительных комплексов. — Прим. авт.) сохранил в памяти многие другие факты из эпопеи создания М-1. «В мае 1950 года я демобилизовался из армии, где был радистом, — вспоминает он, — и передо мной встала проблема трудоустройства. Поскольку никакого специального образования у меня не было, мне, как правило, предлагали поступить сначала учеником и только после этого обещали определить на работу. Но это меня не устраивало. Однажды, оказавшись на Ленинском проспекте (тогда это была Большая Калужская улица) на стене дома № 18 я заметил скромную вывеску „Лаборатория электросистем“. Решил зайти. Меня провели в кабинет руководителя лаборатории, где находилось несколько человек. Во время нашего разговора в комнату быстрой походкой вошел невысокий коренастый мужчина. Остановившись около меня, он спросил: „К нам на работу?“ — и стал расспрашивать о моей службе в армии. В заключение сказал, что мне придется делать приборы и устройства для нового направления в технике. Причем говорилось все это так, будто я уже был сотрудником лаборатории. Такое отношение меня приятно удивило, и я уже искать работу в других местах не пытался. Так произошло мое первое знакомство с И.С. Бруком, и в июне 1950 года я приступил к работе в должности техника-электромеханика. В первый же день во время беседы он конкретно назвал это новое направление — создание автоматической цифровой вычислительной машины и сказал, что для этого в лаборатории создается новый коллектив во главе с Н.Я. Матюхиным — молодым инженером, окончившим радиотехнический факультет МЭИ, и мне придется работать под его руководством. При этом он указал на молодого высокого худощавого человека, находившегося здесь же, в кабинете. Так я познакомился с Матюхиным. Николай Яковлевич коротко рассказал мне о лаборатории, показал комнату, которая готовилась для проведения работ. Затем он отвел меня в монтажную мастерскую к А.Д. Гречушкину и сказал, что для начала придется поработать некоторое время здесь.



Ю.В.Рогачев


Лаборатория электросистем размещалась на двух территориях: часть помещений находилась в основном здании ЭНИНа (дом № 19 по Ленинскому проспекту) и часть здесь, на первом этаже и в подвале правого крыла дома № 18. Инженеры и ученые энергетики в большинстве своем располагались в основном здании ЭНИНа. Там находился механический интегратор, на котором они решали свои задачи. В доме № 18 был установлен расчетный стол переменного тока, предназначенный для моделирования сложных электрических цепей, размещались основные производственные участки и службы лаборатории электросистем: участок механической обработки металлов, слесарный участок и хорошо оснащенная монтажная мастерская. Имелся небольшой склад комплектующих изделий, электро-, радиоизмерительных приборов и другой аппаратуры.

Первые общие представления о цифровых вычислительных машинах, о том, как с помощью электронных схем выполняются арифметические операции, и что наиболее удобной для этого является двоичная система счисления, которая содержит всего две цифры — ноль и единицу, и как эти цифры можно представить в электронной схеме триггера, обладающей двумя устойчивыми состояниями, я узнал от Н.Я. Матюхина.

Он подробно рассказал, как работает арифметический узел. Объяснения были четкими и понятными. Чувствовалось, что он детально проработал все схемы арифметического узла.

По чертежу Матюхина я смонтировал схему электронного триггера. Практически с этого времени и началась экспериментальная отработка элементной базы М-1.

К сентябрю 1950 года была составлена полная схема одного разряда арифметического узла с сумматором и логическими схемами, обеспечивающими все арифметические и логические операции. Изготовленный макет показал, что схема работает надежно и что использованные в устройстве купроксные выпрямители устойчиво выполняют функцию ламповых диодов.

Несмотря на то, что Николай Яковлевич только что закончил институт, он вполне успешно справился с ролью главного конструктора ЭВМ. Более того, наряду с Бруком его следует считать автором концепции „малых“ ЭВМ. Эта концепция, вначале неосознанная, в значительной мере вытекала из скудных материальных возможностей лаборатории. Ведь работа финансировалась только АН СССР.

Осенью 1950 года (в октябре) был начат монтаж схем машины. Для монтажа всех схем использовалось два типа панелей: на 10 радиоламп с однорядным их расположением и на 22 радиолампы с двурядным расположением. Первыми начали изготавливаться однорядные панели со схемами цифровой части арифметического узла. На такой панели размещался полностью один разряд со всеми триггерами, дешифраторами, сумматором и клапаном. Чуть позднее стали поступать для монтажа и схемы местного программного датчика арифметического узла, а затем и схемы главного программного датчика машины, разработанные Карцевым.

Монтаж выполнялся непосредственно в лаборатории электросистем силами нескольких монтажников, оплачиваемых по трудовому соглашению (деньги Брук выпросил у президента академии Вавилова).

В это же время готовилось место для установки и сборки машины. В комнате площадью всего 15 кв. метров был построен постамент размером примерно 1,5x1,5 м. В центре постамента установлена прямоугольная вентиляционная колонна с отверстиями для обдува блоков. По бокам этой колонны размещалось три стойки, предназначенных д^я крепления на них панелей с электронными схемами: стойка арифметического узла, стойка главного программного датчика и стойка памяти. Под постаментом установлен вентилятор, нагнетавший в колонну воздух для охлаждения блокоа По мере получения от монтажников изготовленных панелей они устанавливались на штатное место. Проверялась правильность монтажа и работоспособность схем, а также, не ожидая полного комплекта панелей, проводилась поэтапно и автономная настройка устройства в целом. Такая организация работы значительно сократила сроки начала комплексной отладки машины. Так, монтаж панелей арифметического узла был закончен в декабре 1950 года, а уже в январе следующего года (т. е. через 1–1,5 месяца) арифметический узел был автономно отлажен. Причем это время было затрачено только для отладки местного программного датчика арифметического узла, так как его цифровая часть была уже отлажена ранее. Одновременно шло изготовление и автономная отладка главного программного датчика. Матюхин и Карцев, отлаживая аппаратуру на своих стойках, работали по 16–18 часов в день. К весне 1951 года был изготовлен и магнитный барабан. Цилиндр его был покрыт ферромагнитным материалом. Началась отладка магнитной памяти — регулировка магнитных головок и электронных схем записи и чтения. Эти работы выполнял Л.М. Журкин под техническим руководством Н.Я. Матюхина. Когда в лабораторию электросистем был принят А.Б. Залкинд, он подключился к отладке арифметического устройства и разработал устройство ввода-вывода.

Всю первую половину 1951 года шла работа по автономной настройке устройств, их электрической и функциональной стыковке и комплексной отладке машины в целом. К началу отпускного периода эта работа была доведена до такого состояния, при котором машина в ручном (неавтоматическом) режиме выполняла все арифметические операции. Успеху дела во многом способствовала и атмосфера тесной дружбы, установившаяся в коллективе, и отеческое отношение к сотрудникам ее руководителя — И.С. Брука. Его неистовое желание опередить всех передавалось нам, и мы работали не жалея сил. Все были молоды, только начинали входить в творческую жизнь, с восторгом воспринимали свою причастность к зарождающемуся новому направлению техники. Поэтому работа не казалась тяжелой: труд был по-настоящему радостным. Новизна дела и интерес к этому делу, желание как можно скорее увидеть очередной результат, а результат был виден при каждом шаге вперед, заставляли не считаться со временем. С удовольствием оставались в лаборатории сверх установленного времени, работая с раннего утра до позднего вечера.

В процессе автономной настройки устройств и первого этапа комплексной стыковки машины каждое устройство имело свои автономные источники питания. В.В. Белынский разработал общую схему электропитания машины и летом, во время отпуска основных разработчиков, подключил ее.

С конца августа началась комплексная отладка машины: выполнение арифметических и логических операций в автоматическом режиме. С вводом в эксплуатацию устройства ввода-вывода, разработанного За-лкиндом, началась отработка технологии программирования. Первые программы составлялись для простых задач. Одной из них было решение уравнения параболы у=х2. Эта задача замечательна тем, что в процессе ее решения получались одинаковые значения у как для положительного, так и для отрицательного значений х. Таким образом, сравнивая симметричные значения результатов, можно было определить правильность работы машины. Это была удачная находка. Ведь тогда еще не было и понятия о специальных тестовых программах для контроля правильности работы машины. Можно считать, что уравнение параболы у=х2 явилось первой тестовой программой для машины М-1. Второй такой программой было решение уравнения у = 1/х.

Решением этих уравнений закончился этап комплексной настройки машины. Результаты полуторагодовой работы были оформлены отчетом.

С начала 1952 года машина М-1 перешла в режим опытной эксплуатации. На ней решались различные задачи с целью проверки технических решений и отработки технологии программирования. Выяснилась, например, необходимость пульта управления и операции „Останов“, чего разработчики не предусмотрели.

В этот период все принимали активное участие в эксплуатации машины, выявляя удачные и слабые места в ее схемах».

Любопытный эпизод, связанный с эксплуатацией машины, вспоминает один из участников создания ЭВМ М-1 А.Б. Залкинд. «Машинное время на первых ЭВМ было крайне важно для ведомства, где во главе стоял Борода (так тогда именовали И.В. Курчатова). Правой рукой Бороды, ответственным за математику (тогда термина „математическое обеспечение“ еще не существовало) был известный ученый СЛ. Соболев. Он часто бывал на ЭВМ М-1, всячески поддерживая наши работы. Для его коллектива требовалось провести обращение матриц большой размерности. И это было выполнено на М-1 в самом начале 1952 года.

В это время мы начали получать первые отечественные пентоды 6x4. Попытка заменить немецкие пентоды (в М-1 были использованы трофейные немецкие пентоды. — Прим. авт.) на отечественные провалилась, так как разброс напряжения отсечки наших пентодов был весьма велик. Работа ЭВМ М-1, даже на тестах, прекратилась. Для Соболева это было весьма неприятно. А для нашего коллектива разработчиков — просто катастрофой.



Первая задача, решенная на М1


Меня послали в Ленинград на завод „Светлана“ с заданием привезти партию в несколько сот ламп 6x4, прошедших специальный контроль. Для этого изготовили простейший стенд с сетевой вилкой и с одной ламповой панелью, схемой питания для пентода и тестером ТТ для замера тока. Подготовили обычное письмо: „В порядке оказания технической помощи просим разрешить представителю (имярек) отбраковать ваши лампы 6x4. Оплату гарантируем.“

Перед самым отъездом у нас побывал СЛ. Соболев. Он сказал мне: „Если будут трудности, вам следует позвонить по телефону. В начале разговора произнести слово (Сергей Львович привел название известного всем цветка).

После такой подготовки я с трепетом ступил на ковровую дорожку кабинета главного инженера завода „Светлана“ Гаврилова. Я еще топтался у входа, когда Гаврилов, не поднимаясь с кресла, спросил: „Подбирать лампы?“ Я ответил: „Да“. В ответ услышал: „Вон отсюда“!“

Грустно поплелся я в гостиницу и тут вспомнил напутствие Сергея Львовича… Позвонил. После ответа абонента назвал цветок. Голос в трубке произнес номер квартиры в жилом доме на Невском проспекте, против трикотажного ателье. Приехал по этому адресу. Внешне обычная квартира. Впустили, внимательно выслушали и сказали: „Мы действуем только на уровне третьего секретаря обкома. Вам придется подождать два дня и позвонить нам тем же способом“

Через два дня на мой звонок был ответ: „С Гавриловым все в порядке. Можете его навестить“.

На „Светлане“ Гаврилов улыбался, подал руку и дал указание выполнять все, что мне требуется. Я увез в Москву три сотни ламп 6x4.

Так оперативно решали все, что требовалось для „Гордорстроя“ (так в те годы именовалось подразделение МГБ, отвечавшее за атомный проект). ЭВМ М-1 снова начала свою круглосуточную вахту. Соболев нас сердечно благодарил».

И.С Брук, ободренный успехом, в апреле 1952 года поручает группе инженеров и техников под руководством М.А. Карцева начать работу по созданию новой ЭВМ, более совершенной по исполнению и характеристикам. Молодежный коллектив и на этот раз сделал, казалось бы, невозможное, — в конце 1952 года (всего через полгода!) новая, более мощная ЭВМ была уже смонтирована и поставлена на отладку!

О начале своего пути в науке — работе по созданию ЭВМ М-2 — Карцев рассказал сам, выступая перед коллективом созданного им в 1967 г. Института вычислительных комплексов Минрадиопрома СССР, когда отмечалось пятнадцатилетие со дня его организации.

«Весной 1952 года (я как раз успел к этому времени получить диплом) Брук выделил мне группу в составе 7 человек и поручил спроектировать и построить вычислительную машину (М-2. — Прим. авт.). То, как мы это делали тогда, мне сейчас трудно себе представить. Мы разрабатывали техническую документацию, вели производство на опытном заводе Института горючих ископаемых Академии наук, в опытном производстве ОКБ МЭИ, на заводе медаппаратуры на „Соколе“ (и еще примерно в десятке организаций), собирали и налаживали машину. Начали мы работы весной 1952 года, а к 10 октября 1952 года, к открытию XIX съезда КПСС, были включены первые две стойки — устройство управления и арифметическое устройство, к 7 ноября был включен шкаф питания и магнитный барабан, к 5 декабря, ко Дню Конституции СССР, был включен последний шкаф машины — шкаф электронной памяти. И уже в январе 1953 года машина работала с магнитным барабаном, а к лету того же гоДа и с электронной памятью. Машина М-2, вообще говоря, осталась в единственном экземпляре, ее попробовали повторить в Китае, но сведений о том, что она там заработала, у нас не было. (В журнале „Дружба“, № 11 за 1958 г., в статье Дай Цзянь Юаня „2000 вычислений в секунду“ сказано, что ЭВМ М-2 была запущена в эксплуатацию в октябре 1958 г. — Прим. авт.). Но это была машина серьезная. На ней велись очень большие и очень важные расчеты. Собственно говоря, в течение нескольких лет в Советском Союзе было две работающих машины: наша М-2 и машина БЭСМ Института точной механики и вычислительной техники АН СССР. (БЭСМ была принята в регулярную эксплуатацию в апреле 1953 г. — Прим. авт.). Большие расчеты вел Сергей Львович Соболев для Курчатова. Считались задачи для фирмы Акселя Ивановича Берга. Нам были поручены (специальным распоряжением правительства) расчеты прочности плотин строившихся тогда Куйбышевской и Волжской гидроэлектростанций. Эти расчеты вел Институт механики Академии наук. Считали на нашей машине свои задачи М.А. Михеев (Институт теоретической и экспериментальной физики А.И. Алиханова, а тогда он назывался Теплотехнической лабораторией Академии наук) и многие, многие другие».

Все задачи на ЭВМ М-2 ставились и решались исключительно по согласованию с И.С. Бруком. И все же при просчете самой первой задачи это «железное» правило было нарушено, о чем он узнал лишь 15 лет спустя. А случилось это так. В конце 1953 года, когда, заканчивалась отладка ЭВМ М-2, И.С.Брук уехал отдыхать в Кисловодск. В это время в соседней лаборатории Энергетического института АН СССР группа ученых лаборатории физики горения, руководимая Татьяной Валериановной Баженовой, в муках «рожала» таблицы термодинамических и газодинамических параметров воздуха, необходимые для ракетчиков (для определения толщины защитной огнеупорной обмазки). Группа засела за расчеты летом 1953 г. и обещала закончить их к декабрю. Срок исполнения близился, а до получения обещанных таблиц было еще далеко. «Несмотря на то, что в расчет принимались лишь два основных компонента воздуха — азот и кислород, — вспоминает Т.В. Баженова, — задача оказалась чрезвычайно трудоемкой: к уравнениям диссоциации кислорода и азота нужно было добавить уравнения ионизации их атомов, образования окиси азота, к ним — уравнения встречных процессов, закона сохранения энергии, газодинамические законы ударной волны. В результате получилась система из 13 уравнений, которую нужно было решать методом последовательных приближений.

Сначала эту работу поручили двум лаборантам, но они при всем желании явно не могли успеть в срок — слишком громоздки были расчеты. Тогдаобратились на Первую московскую фабрику механизированного счета, где за задачу взялся уже целый зал девушек за клавишными машинками. Работа пошла быстрее, но еще быстрее приближался установленный срок ее завершения. Существовавшая в то время единственная электронная машина БЭСМ работала на срочные серьезные заказы и очередь на нее расписывалась надолго вперед… И тут неожиданно пришло избавление.

Мы знали, что в соседней лаборатории, руководимой членом-корр. АН СССР И.С. Бруком, идет работа над какой-то новой секретной машиной. Однажды мои друзья из этой лаборатории, с которыми я не раз ходила в туристические походы, пришли ко мне на день рождения и принесли в подарок дефицитную лыжную мазь. Баночки с мазью стояли одна на другой и были обмотаны бумажной лентой с ровными строчками цифр. Как ни мало я тогда знала об атрибутах вычислительной техники, но эта лента явно была похожа на ту, что применяется для выдачи результатов расчета на электронных машинах. Спрашиваю ребят: „Это ваша лента?“ — „Наша“. - отвечают они. После этого, конечно, нетрудно было сообразить, что за секретную машину разрабатывает их лаборатория. Мы с Ю. Пржиемским, как два парторга, обратились к нашим друзьям Мише Карцеву и Юре Лавренюку, Тамаре Александриди. Они с пониманием отнеслись к нашим трудностям. Машина тогда еще не вступила в строй и не была загружена заказами. „Бруковцы“ стали опробовать ее на нашей задаче. И, надо сказать, вовремя: ракетчики дежурили около дома № 18 на Ленинском проспекте и по кускам увозили к себе готовые части таблиц, чтобы, основываясь на них, делать расчеты обмазки наших первых межконтинентальных ракет. Как мы теперь понимаем, срочность была обоснованной: обладание такой ракетой ставило нашу страну в равные условия с США».

(В 1968 г., спустя 15 лет, Т.В. Баженова рассказала об этом случае в статье «Космос в трубах» журнала «Наука и жизнь».)

ЭВМ М-2 не была запущена в серию, несмотря на ее превосходные характеристики и отличное конструктивное исполнение (см. Приложение 5). Время подтвердило ее высокие качества: в Энергетическом институте АН СССР она бессменно проработала 15 лет обеспечив решение множества задач в различных областях науки и техники.

При конструировании этой машины в полной мере проявился творческий талант М.А. Карцева.

В отличие от малой ЭВМ М-1 машину М-2 следует отнести к классу больших машин. Она имела ту же производительность, что и ЭВМ «Стрела» (2000 операций в секунду), и БЭСМ в первый период эксплуатации.

В творческой биографии Карцева разработка М-2 стала первым шагом на пути к собственной научной школе, основным направлением которой стало создание супер-ЭВМ специального назначения.

Почти одновременно с ЭВМ М-2 в лаборатории Брука началось проектирование еще одной малой электронной вычислительной машины — М-3. Руководителем работ по созданию этой машины Брук назначил Н.Я. Матюхина.

Решение о разработке столь небольшим колективом, каким была в то время лаборатория, сразу двух машин можно объяснить, по-видимому, тем, что оба талантливых ученика Брука — Матюхин и Карцев стремились к самостоятельной работе и уже начали проявлять черты будущих лидеров новых научных школ, что не мог не учитывать их проницательный научный руководитель.

Вероятно и машина М-3 осталась бы в единственном экземпляре (она разрабатывалась также без всяких на то постановлений), если бы не академик Виктор Амазаспович Амбарцумян. Приехав в 1954 г. в Москву, он попросил своего друга директора ВНИИЭМ А.Г. Иосифьяна помочь Академии наук Армении приобрести ЭВМ. Последний обратился к Бруку, в лаборатории которого заканчивался проект ЭВМ М-3. «Высокие стороны» договорились о совместном завершении работ и изготовлении трех машин М-3 во ВНИЭМ, обладавшем достаточно мощной производственной базой: для ВНИЭМ, Ереванского математического института АН Армянской ССР и организации С.П. Королева. Была создана совместная группа: Н.Я. Матюхин, В.В. Белынский (от И.С. Брука) и Б.М. Кагана, В.М. Долкарта и Г.П. Лопато (от А.Г. Иосифьяна). В 1956 г. первый образец ЭВМ М-3 был отлажен и предъявлен Государственной комиссии вместе с технической документацией, необходимой для серийного производства, (см. Приложение 6).

Б.М. Каган, неформально руководивший совместной группой, выступая на торжественном заседании, посвященном 90-летию И.С. Брука, рассказал о дальнейшей судьбе машины.

«История вычислительной техники в Советском Союзе еще не написана, поэтому любой факт в ее развитии интересен.

…Поскольку работа по созданию ЭВМ М-3 была инициативной и не входила в какие-либо планы, то Государственная комиссия во главе с академиком Н.Г. Бруевичем с участием М.Р.Шуры-Буры проявила характер и не хотела принимать машину: мол, родилась незаконно. Но все же приняли. И два года не удавалось по-государственному решить вопрос — запустить ее в серийное производство. В это время организовался Ереванский институт математических машин, и по нашей документации на ЭВМ М-3 этот институт построил свои первые ЭВМ („Арагац“ и „Раздан-1 и 2“. — Прим. авт.). В те же годы построили завод в Минске, но оказалось, что делать ему нечего. Минчане узнали, что есть машина у Иосифьяна, которую никто не соглашается поставить на серию. И только тогда было принято решение передать документацию на М-3 из ВНИЭМ на этот завод. Так работа по созданию ЭВМ М-3 стала основой для развития математического машиностроения в Ереване и Минске.

Хочу также отметить, что и в Китае и в Венгрии по нашей документации были построены первые машины. Во ВНИЭМ эти работы явились толчком к дальнейшему интенсивному развитию комплекса крупномасштабных исследований и конструкторских работ, связанных с созданием управляющих вычислительных машин и систем».

Так «бруковской команде» удалось наконец войти в число разработчиков ЭВМ, выпускаемых промышленностью.

Новое увлечение

В 1956 г. И.С. Брук выступил с докладом на сессии Академии наук СССР по автоматизации, где изложил главные направления промышленного применения ЭВМ. В 1958 г. под его руководством была, разработана проблемная записка «Разработка теории, принципов построения и применения специализированных вычислительных и управляющих машин».

Эти два документа по существу были первыми набросками программ автоматизации народного хозяйства на основе ЭВМ. Впервые в отечественной практике рассматривались вопросы применения ЭВМ не только в таких традиционных с точки зрения необходимости проведения расчетов областях как техника, физика, математика, но также было обосновано использование машин для решения задач управления технологическими объектами и экономикой (расчеты межотраслевых балансов, оптимальных перевозок, ценообразования и пр.)., Проблемная записка И.С. Брука явилась толчком к организации в стране в конце пятидесятых годов ряда научно-исследовательских организаций и конструкторских бюро по управляющим машинам и системам.

На базе лаборатории электросистем ЭНИНа в 1956 г. была создана Лаборатория управляющих машин и систем (ЛУМС) АН СССР, а в 1958-м — Институт электронных управляющих машин (ИНЭУМ) АН СССР, первым директором которого стал И.С. Брук. В это же время Брук был утвержден Президиумом АН СССР научным руководителем проблемы «Разработка теории, принципов построения и применения управляющих машин».

В ИНЭУМ АН СССР под руководством Брука были созданы управляющие машины М-4 (1957–1960 гг.) для решения специальных задач в системах Радиотехнического института АН СССР (главный конструктор М.А. Карцев); М-5 (1959–1964 гг.) — для решения экономических задач, планирования и управления народным хозяйством (главный конструктор В.В. Белынский); М-7-200 и М-7-800 (1966–1969 гг.) — для задач управления мощными энергоблоками (Конаковская ГРЭС, Славянская ГРЭС) и технологическими процессами (главный конструктор Н.Н. Ленов).

Будучи директором института И.С. Брук уделял много внимания нуждам растущего института, созданию здорового работоспособного коллектива, воспитанию высокой научной требовательности у своих учеников.

Выйдя на пенсию в 1964 году, Исаак Семенович оставался научным консультантом и руководителем научно-технического совета ИНЭУМ, продолжал живо интересоваться его работами. За последние пять лет жизни им получено 16 авторских свидетельств, а всего ему принадлежит более 100 научных работ, в том числе более 50 изобретений. Вклад И.С. Брука в науку и технику отмечен четырьмя орденами Трудового Красного Знамени и рядом медалей.



Тамара Миновна Александриди (50-е гг.)


Объективности ради следует сказать, что на пенсию И.С. Брук не вышел, а его «вышли». Об этом рассказывает д.э.н. В.Д. Белкин, работавший совместно с И.С. Бруком, который в последние годы своей деятельности заинтересовался экономическими задачами в связи с намечаемой хозяйственной реформой.

«Брук был одним из немногих, кто откликнулся на призыв провести радикальную экономическую реформу и построить социализм если не с человеческим, то хотя бы с экономическим лицом. Но все это „в верхах“ страшно саботировалось. Старого монолита там уже не было, но систему удерживать пытались. Покушение на нее усматривалось даже в самых невинных предложениях экономистов нашего института. Брук ясно представлял, что экономика страны идет в тупик, и говорил, что этому способствует недостаточная связь между двумя системами управления — советской (Совмин, Госплан и др.) и по линии партии. „Система управления, которую создала партия, представляет систему быстрого реагирования, но ее недостаток в отсутствии обратной связи“, — говорил он. Надо обладать прозорливостью И.С. Брука, чтобы сказать тогда такие слова.

Произошло сильное сражение в Госплане (по ценовой политике), на котором его председатель Ломако, этот последний чиновник сталинского пошиба, сказал Бруку: „Вы попали в ведение Госплана (в конце 50-х годов ИНЭУМ был выведен из состава АН СССР и передан в созданный тогда Госэкономсовет при Госплане СССР. — Прим. авт.), и вам дорого обойдется этот бунт“. Его просто вынудили уйти на пенсию.

Уже после этого наши экономисты предложили схему, при которой рынком будут управлять банки. И.С. Брук, оставшийся при институте научным консультантом, раскритиковал ее. „Представленный вами рынок, управляемый банками, подобен людям, плавающим на надувных пузырях и испытывающих от этого блаженство, — съязвил он. — Такого с точки зрения теории — управления быть не может. Снизу должны подплывать „бесы“ и протыкать пузыри, т. е. должен быть закон о банкротстве“.

Эти и другие идеи И.С. Брука, связанные с движением к рынку, высказанные много лет назад, показывают, что и в теории экономической науки он был ученым высокого уровня». (Из выступления на торжественном заседании, посвященном 90-летию со дня рождения И.С. Брука.)

6 октября 1974 г., спустя три месяца и три дня после смерти С.А. Лебедева, не стало и И.С. Брука…

Вспоминают ветераны

Составленный по официальным материалам творческий портрет И.С. Брука не дает, однако, полного представления об этом сложном и противоречивом человеке.

Ветераны его лаборатории Т.М. Александриди, А.Б, Залкинд, Н.Н. Ленов, Ю.В. Рогачев, В.В. Белынский, Ю.А. Лавренюк и др. дополнили портрет ученого.

«Исаак Семенович казался мне тогда именитым и ужасно грозным, вспоминает Т.М. Александриди. — По теперешним представлениям он был еще достаточно молодым, — ему не было пятидесяти лет. Но тогда в моем представлении это был человек преклонного возраста, с высокими научными степенями, суровый и т. д.



И.С. Брук (слева) и А.Л. Минц (70-е гг.)


Ему хотелось все сделать быстрее. В лабораторию он буквально вбегал, быстро обходил сотрудников, внимательно расспрашивал как идут дела, давал советы, внимательно выслушивал просьбы, делал замечания за недоработки и упущения.

Одаренный от рождения, всесторонне образованный, требовательный к себе, он вызывал у своих сотрудников чувство восхищения, желание подражать. Относился к ним как строгий и заботливый отец, — увидев, например, что у Матюхина нет пальто, принес ему свое кожаное, старался помочь и другим.

…Своим энтузиазмом, одержимостью в работе Брук вдохновлял нас, приучал не пасовать ни перед чем. Мы были молодыми и не всегда понимали, рядом с каким человеком работаем. Теперь, пройдя значительный путь в своей деятельности, я поняла, что человека такого калибра, как Брук, больше не встречала, хотя приходилось работать и с академиками.

Необычайная одаренность, энергия, умение увлечь людей своей работой, энциклопедические знания (нам тогда казалось, что он знает все), необыкновенная математическая образованность, выдаваемый фейерверк всяких идей показывали, что И.С. Брук необыкновенный человек».

«Он не терпел верхоглядства, никогда не лицемерил и поэтому представлялся внешнему миру — на ученых советах, заседаниях, конференциях — желчным, задиристым оппонентом, въедливым критиком, словом, „возмутителем спокойствия“. Мог, например, сказать о машине „Стрела“, первой пошедшей в серию: „Это каменный век!“ (Н.Н.Ленов, Н.В.Паутин).

„И.С. Брук был очень скрытным человеком и жестко требовал, чтобы сведения о делах лаборатории не выходили за ее стены. Избегал участвовать в работах по постановлениям правительства с привлечением других коллективов. Работы по созданию ЭВМ М-1, М-2, М-3 выполнялись как внутриакадемические, по постановлениям Президиума АН СССР. Работали мы в тяжелых условиях. Чувствовалось, что машины мы делаем как-бы незаконно, их нет в государственном плане, их не обеспечивали современным оборудованием. Приходилось использовать оборудование и комплектующие элементы со склада трофейного немецкого имущества“ (Т.М. Александриди).

„Такие черты характера не могли не помешать продвижению его работ, его карьере. Только третья разработанная в его лаборатории ЭВМ-М-3 была выпущена малой серией, а затем получила свое второе рождение в промышленности. Только в 1958 году он сумел организовать давно задуманный институт“ (Н.В. Паутин).

„И.С. Брука настолько переполняли новые идеи, настолько его увлекало стремление заниматься новым и новым, что он, по существу, иногда оставлял на полпути не только дела, но и людей“ (Т.М. Александриди).

„Ученого сделать нельзя“, — говорил он и утверждал, что путь в науку через аспирантуру не эффективен, „Занимайтесь делом, и все получится!“ Даже своих лучших учеников — Матюхина и Карцева он не торопил, скорее задерживал с защитой диссертаций, считая, что они вначале должны получить богатую инженерную практику. Может, поэтому он не сохранил их в составе своего института. Оба в дальнейшем ушли из него, стали крупными учеными, основателями научных школ» (Н.Н. Ленов).

Автор познакомился с И.С. Бруком в 1956 году. В марте 1956 г. в Москве прошла конференция «Пути развития советского математического машиностроения и приборостроения». Она впервые собрала специалистов вычислительной техники со всех концов Советского Союза. Огромный актовый зал Московского университета, где проходило пленарное заседание, был переполнен. Конференцию открыл академик Лебедев, инициатор ее проведения. Первый доклад «История и развитие электронных вычислительных машин» сделал профессор Д.Ю. Панов. Он, в частности, сказал: «В настоящее время всем известна универсальная электронная вычислительная машина БЭСМ Академии наук СССР, разработанная и построенная в 1952 г. под руководством академика Лебедева. Эта машина по своим данным превосходит все европейские и большинство американских машин.

На Международной конференции в Дармштадте осенью 1955 г. академик Лебедев сделал доклад об этой машине, и присутствующие на конференции иностранные ученые и инженеры дали ей высокую оценку.

На настоящей конференции вы услышите доклады многих советских ученых и конструкторов, в том числе доклад академика Лебедева „Быстродействующие универсальные вычислительные машины“; доклад о советской цифровой электронной машине М-2, разработанной под руководством члена-корреспондента АН СССР Брука; о машине „Стрела“, разработанной под руководством Ю.Я.Базилевского и др. Вы услышите также доклады, посвященные нашим работам в области моделирующих устройств, проводимым В.Б. Ушаковым, Л.И. Гутенмахером, Н.В. Корольковым и др.».

Надо ли говорить о том, с каким вниманием я слушал докладчиков, вглядывался в лица участников конференции во время перерывов, пытаясь отыскать выступавших, чтобы ближе познакомиться с теми, кого не знал ранее.

Мой доклад «Устройства, основанные на сочетании магнитных и кристаллических элементов» был заслушан на секции универсальных цифровых машин. На этой же секции выступила Тамара Миновна Александриди. Ее доклад «Электростатическое запоминающее устройство ЭВМ М-2» и она сама — молодая, стройная, энергичная, привлекли мое внимание, и я подошел к ней с какими-то вопросами, а потом сумел побывать в лаборатории электросистем, где она работала.

Исаак Семенович Брук в то время был в расцвете творческих сил (ему было 54 года).

После конференции я несколько раз видел Брука, ближе познакомился с Матюхиным и Карцевым, тем не менее мои сведения о них в то время и позднее не выходили за рамки знаний о машинах, которые были разработаны под их руководством, и тех книг и статей, которые были ими написаны.

Когда задумывалась эта книга, их уже не было…

Георгий Павлович Лопато, один из последователей научной школы И.С. Брука (о нем я расскажу позже), знавший, что я собираю материалы для книги, сообщил мне телефон Александриди, живущей по-прежнему в Москве. Признаюсь, звонил ей с душевным трепетом, помнит ли? 40 лет назад Тамара Миновна была начинающим молодым специалистом. А сейчас? Как отнесется к моему разговору? Действительность превзошла все ожидания: она сразу же пригласила меня в Москву, чтобы встретиться с разработчиками первых «бруковских машин». После нескольких встреч «за круглым столом» у меня появилось достаточно материалов о научной школе И.С. Брука. Основные из них я получил от Т.М. Александриди (жены Н.Я. Матюхина), Ю.В. Рогачева, сменившего М.А. Карцева на посту директора Института вычислительных комплексов (г. Москва), В.В. Белынского, сотрудника организованного Бруком Института электронных управляющих машин ИНЭУМ (г. Москва), А.Б. Залкинда, начальника отдела НИИ автоматической аппаратуры (г. Москва).

Много рассказали остальные участники встреч — бывшие разработчики первых ЭВМ: Р.П. Шидловский (к.т.н., НИИ вычислительных комплексов); Ю.А. Лавренюк (к.т.н., НИИ вычислительных комплексов); Л.С. Легезо (д.т.н., НПО «Комета»); Н.Н. Ленов (к.т. н, сотрудник ИНЭУМ).

И.С. Брук старался принимать в свою лабораторию исключительно мужчин. Тамара Миновна Александриди была единственной, женщиной среди разработчиков М-1. Ученого «подвела» необычная фамилия Тамары Миновны.

Ей она обязана отцу — обрусевшему греку из Краснодара. Через два года после ее рождения семья распалась, и девочку воспитывала мать, переехавшая в Москву. Перед самой войной Тамара окончила среднюю школу. Одновременно, занимаясь в Московском радиоклубе, получила специальность радиста. Ей еще не было семнадцати (она родилась 26 сентября 1924 г.), все было впереди… Но грянула война. Она пошла добровольцем в армию. Вначале месяц под Москвой изучала радиодело, а в августе уже оказалась в осажденном врагами Севастополе. Вместе с последней группой наших бойцов покидала город и до последней минуты держала связь с Большой землей. Потом были десант на Керчь и бои на Таманском полуострове. Когда фашисты прижали десантников к берегу, они чудом вырвались из окружения. Соорудив плот, группа морем прорвалась к своим. О бесстрашии и четкой работе радистки Тамары в те тяжелые дни появился рассказ во фронтовой газете. Остатки ее полка передали в 62-ю армию. Когда вражеские войска подошли к Сталинграду, ее часть находилась на Мамаевом кургане. 22 августа 1942 года гитлеровцы предприняли первый разрушительный налет на город. На ее глазах здания превращались в груду развалин, над которыми вставали тяжелые от пепла и дыма облака… Ей опять повезло — из великого сражения на Волге она вышла живой…

В мае 1943 года Тамару Александриди вызвали в столицу. Московские осоавиахимовцы вручили воспитаннице радиоклуба и лучшей фронтовой радистке радиостанцию «Московский радиолюбитель». С ней храбрая девушка прошла с боями по полям Украины, форсировала Днепр, Вислу, Одер и приняла в Берлине последнюю радиотелеграмму, в которой сообщалось о безоговорочной капитуляции гитлеровской Германии.

В Москву она вернулась в июне 1945 г. с орденом Отечественной войны II степени и пятью медалями.

В том же году поступила в Московский энергетический институт. В 1950 г. ее направили в лабораторию Брука, на дипломное проектирование. О ее работе при создании М-1 я уже рассказал. Затем, уже будучи младшим научным сотрудником, она разработала и отладила устройство памяти для ЭВМ М-2. Потом были аспирантура (руководитель академик В.А. Трапезников) и успешная защита кандидатской диссертации.

Отличное владение вычислительной техникой позволило ей быстро переквалифицироваться в специалиста по автоматизированным системам управления. Когда мы снова увиделись, Т.М. Александриди была уже профессором, заведовала кафедрой автоматизированных систем управления в Московском автодорожном институте. Она-то и познакомила меня со многими материалами о жизни и деятельности мужа.

Николай Яковлевич Матюхин

Пройдя «школу» И.С. Брука, Н.Я. Матюхин стал выдающимся ученым, создателем собственной научной школы.

Николай Яковлевич родился в 1927 г. в Ленинграде. В это время его отец, Яков Васильевич, работал на заводе электротехником, мать, Маргарита Федоровна, была домохозяйкой. Отец родился в 1880 г. в семье крестьянина с. Городец Выгоничского р-на Брянской области. До революции работал электромонтером на одном из заводов Петрограда. Мать родилась в 1895 г. в г. Боброве Воронежской области в семье письмоводителя гимназии и после окончания гимназии работала учительницей в начальной школе.



Николай Яковлевич Матюхин (50-е гг.)


Яков Васильевич участвовал в революционном движении, был в 1909–1910 гг. членом районного комитета СДРП Выборгской стороны Петрограда. Дружил с Калининым, был знаком с Джугашвили, Орджоникидзе и другими известными членами СДРП. Все они пользовались его конспиративной квартирой. После революции Матюхин отошел от политической деятельности, работал техником-электриком. В 1932 г. Калинин, с которым он был по-прежнему в дружеских отношениях, перевел его на работу в Москву. Семье предоставили комнату в правительственном доме на ул. Грановского. Никто тогда не думал, к чему это приведет, радовались столице, хорошей квартире.

В 1935 году Николай Матюхин поступил в школу. Учился легко, радуя успехами родителей. Мать Николая — Маргарита Федоровна, была высокообразованным человеком, много читала, была прекрасным рассказчиком и безусловно способствовала разностороннему развитию и воспитанию сына.

Счастливое детство разрушили сталинские репрессии. В 1937 году Я.В. Матюхина арестовали, и о его дальнейшей судьбе семья ничего не знала (в 1957 г. он был реабилитирован посмертно). Семью выселили из Москвы. Распродав личные вещи, мать приобрела маленькую комнатушку в деревянном доме подмосковного поселка Солнцево. Во время войны (в августе 1941 года) семья Матюхиных эвакуировалась в г. Пензу и жила у родственников.

В 1944 г, окончив 10 классов, Николай Матюхин поступил в Московский энергетический институт на радиотехнический факультет. Учился только на «отлично» и одновременно, начиная с 3-го курса, занимался научной работой — два авторских свидетельства за изобретение новой системы радиопередатчика с повышенным КПД тому подтверждение.

В феврале 1950 г., получив диплом с отличием, он, по рекомендации ГЭК, подал заявление в аспирантуру МЭИ на кафедру передатчиков. Святая наивность! Как и следовало ожидать, кадровая комиссия отклонила его кандидатуру. Так он попал в лабораторию Брука, где блестяще справился с ролью руководителя работ по машине М-1, а затем ЭВМ М-3.

Мне очень хотелось найти что-либо из воспоминаний самого Н.Я. Матюхина об этом времени. Роясь в своем архиве, я обнаружил газету «Энергетик» Московского энергетического института за 23 октября 1976 г., целиком посвященную 25-летию кафедры вычислительной техники. И в ней, к моей великой радости, оказалась заметка «Первые шаги» Н.Я. Матюхина, тогда уже доктора технических наук, профессора.

«Заканчивая радиотехнический факультет МЭИ, я всерьез увлекся работой в области УКВ радиопередающих устройств и даже не представлял себе крутого поворота, который ожидал меня после окончания института. Через месяц после защиты диплома меня пригласил к себе проректор МЭИ Чурсин и познакомил с невысоким, чрезвычайно живым и энергичным человеком, который принялся дотошно выспрашивать о моих интересах и моей работе. В заключение он пригласил меня на „современную“ работу в один из институтов Академии наук. Это был член-корреспондент АН СССР И.С. Брук, мой будущий наставник и руководитель.

В те времена Академия наук казалась мне какой-то недосягаемой для простых смертных вершиной, простое пребывание на которой было чем-то невероятным. Должен, кстати, заметить, что в то время и распределение на РТФ было значительно более „жестким“, — многих наших выпускников-москвичей направляли не в НИИ, а на заводы, в том числе периферийные.

Я согласился не раздумывая и даже не представляя себе эту „современную“ работу, ведь в Академии наук любая работа должна быть сверхинтересной! Она действительно оказалась такой, — я стал участником создания одной из первых отечественных цифровых вычислительных машин.

Это направление в Москве развивалось в то время в трех совершенно различных по организации работы группах — академиком С.А. Лебедевым (ИТМ и ВТ АН СССР), чл. — корр. И.С. Бруком и Ю.Я. Базилевским (ныне НИЦЭВТ).



Н.Я.Матюхин (70-е гг.)

Наша группа была самой малочисленной и, наверное, это было одним из главных факторов, заставивших Брука направить наши усилия на создание малых (по тем временам) ЭВМ. Никто из новобранцев, естественно, не представлял себе всей сложности работы, а собрал Брук к этому времени неполный десяток выпускников МЭИ, МАИ и Горьковского университета. Наверное, поэтому мы и не сомневались, что сделаем машину, хотя уровень радиоэлектронной техники тех лет у опытных специалистов мог бы вызвать серьезные опасения в реальности этой затеи. К счастью, мы не имели никакого понятия о теории надежности, о том, что лампы и радиодетали имеют свойство довольно часто отказывать, и без каких-либо колебаний принялись за работу.

Моим первым производственным заданием была сборка комбинационного трехвходового сумматора на ламповых диодах 6x6. Занявшись поначалу перебором комбинаций единиц и нулей, я вспомнил, что в лекциях О.А. Горяинова по курсу „Автоматика и телемеханика“, который нам, радистам, казался второстепенным по сравнению с радиолокацией или импульсной техникой, было что-то схожее. Лекции по всем специальным предметам я сохранял, поскольку техническая литература в то время была достаточно дефицитной, и, порывшись в них, воспользовался при докладе о ходе работы уравнениями булевой алгебры, чем заслужил одобрение Брука.

Работать с Бруком нам, молодежи, было крайне интересно. Он непосредственно руководил деятельностью нашей группы, что, конечно, очень воодушевляло. Разговоры в кабинете были весьма редкими, — обычно он утром врывался в нашу комнату и вступал в беседу прямо за рабочим столом. Одним из принципиальных решений, которое, как мне кажется, предопределяло успех нашей первой машины и короткие сроки ее создания, был курс, принятый Бруком на широкое использование полупроводниковых элементов. Тогда они были представлены в нашей промышленности только малогабаритными купроксными выпрямителями, которые выпускались для нужд измерительной техники.



Т.М.Александриди (70-е гг)


Брук договорился о выпуске специальной модификации такого выпрямителя размером с обычное сопротивление, и мы создали набор типовых схем. В мастерской при лаборатории началось изготовление и монтаж блоков, и менее чем через год машина уже „задышала“ (а было в ней несколько сотен ламп и несколько тысяч купроксов). Когда начинался сеанс работы с машиной, управление которой осуществлялось по прямому проводу полевым телефоном, посетители павильона ВДНХ, где демонстрировались достижения Академии наук, сбегались к нашей экспозиции со всего зала и получали отпечатанные результаты счета.

Занимаясь созданием АЦВМ М-1 (так называлась эта машина), мы вынуждены были разбираться в самых разных вопросах — от регуляторов напряжения для мощных мотор-генераторов постоянного тока, служивших источниками вторичного питания машины, до разработки системы команд и программирования первых задач.

Сам выбор системы команд был для нас делом непростым — в то время общепринятой и наиболее естественной считалась трехадресная система, шедшая еще от работ фон Неймана, которая требовала достаточно большой разрядности регистрового оборудования и памяти. Наши ограниченные возможности стимулировали поиск более экономных решений.

Как иногда бывает в тупиковых ситуациях, помог случай. Брук в то время пригласил на работу молодого математика Ю.А. Шрейдера. Шрейдер, осваивая вместе с нами азы программирования, обратил наше внимание на то, что во многих формулах приближенных вычислений результат операции становится для следующего шага одним из операндов. Отсюда было уже недалеко до первой двухадресной системы команд. Наши предложения были одобрены Бруком и после АЦВМ М-1 получили дальнейшее развитие в машине М-3. Последующий ход событий привел М-3 в Минск, где заканчивалось строительство первого корпуса завода вычислительных машин им. С. Орджоникидзе. Там, в полукустарных условиях, и была выпущена небольшая партия этих машин, вслед за которой завод начал разработку и выпуск широко известной серии машин „Минск“.

Вот так и получилось, что генеалогические корни этой серии уходили в скромное помещение бывшей лаборатории электросистем Энергетического института Академии наук (а если быть более точным, то в подвал, где И.С. Брук впервые демонстрировал наше детище академику Андронову).

В заключение я хотел бы заметить, что намеренно ограничился только упоминанием своих учителей и старших руководителей. Многое можно было бы вспомнить о моих товарищах по работе этих лет, сегодня известных специалистах в области вычислительной техники, но ограничиться одной-двумя фамилиями невозможно, а для большего рамки настоящей статьи слишком малы».

В 1957 г. Николай Яковлевич перешел на работу в Научно-исследовательский институт автоматической аппаратуры Минрадиопрома, где, будучи главным инженером, принимал участие в работах по созданию ЭВМ для ПВО страны, был главным конструктором серийных ЭВМ и управляющих комплексов специального назначения. Именно здесь в полном объеме проявились его талант и гигантская работоспособность.

В 1962 г. он успешно защитил кандидатскую диссертацию, а в 1972 г. получил степень доктора технических наук. Как крупный специалист по вычислительной технике, один из тех, кто заложил основы развития электронного вычислительного машиностроения в СССР, в 1979 г. он был избран членом-корреспондентом АН СССР по отделению «Механика и процессы управления». В 1976 г. за работы в области систем управления был удостоен Государственной премии СССР. Научно-исследовательскую работу он успешно совмещал с педагогической — был профессором базовой кафедры московского Института радиоэлектроники и автоматики.

Среди важнейших научных результатов, полученных Н.Я. Матюхи-ным в теории вычислительных машин и систем, следует выделить разработку архитектурных принципов построения вычислительных машин и комплексов для сложных территориальных автоматизированных систем управления (реального времени) и систем передачи данных в них.

Матюхин был главным конструктором многих вычислительных машин и комплексов, имеющих важное оборонное значение. Под его руководством разработано семейство сложных вычислительных комплексов второго и третьего поколений, выпускаемых промышленностью и успешно эксплуатирующихся. Например, один из таких комплексов производится и применяется уже более десятка лет благодаря своим высоким эксплуатационно-техническим характеристикам и архитектурным особенностям, обеспечивающим эффективное системное применение в различных мобильных и стационарных средствах ПВО.

Впервые созданные в СССР Н.Я. Матюхиным в период 1968–1971 гг. многомашинные комплексы на основе ЕС-подобных ЭВМ показали их высокую эффективность для применения в развивающихся системах. Дальнейшее развитие этих принципов позволило Матюхину в период 1972–1975 гг. создать центр коммутации данных для информационных сетей, также явившийся первой крупной отечественной работой в этом бурно развивающемся в последние годы научно-техническом направлении.

Являясь главным конструктором ряда крупных разработок, Н.Я. Матюхин одним из первых отечественных ученых почувствовал острую необходимость в автоматизации проектирования средств вычислительной техники и начиная с 1964 г. выполнил ряд основополагающих исследований в этом важнейшем направлении. Под руководством и при непосредственном участии Матюхина издается первая отечественная книга в этой области («Применение ЦВМ для проектировании цифровых устройств», 1968 г.). В ней выдвинуты и обоснованы принципы построения систем автоматизированного проектирования средств вычислительной техники, лежащие ныне в основе многих разработанных и проектируемых САПР. В это же время Матюхиным был разработан язык моделирования цифровых устройств (МОДИС) и первая система моделирования ЭВМ, нашедшие широкое применение; разработан комплексный подход к проектированию приборов, объединявший логическое моделирование с процессом автоматизированного конструирования; разработаны принципы сопряжения САПР с системой подготовки производства и выполнен ряд работ по автоматизации планово-производственных задач, возникающих при освоении новых изделий.

На созданной под руководством Н.Я. Матюхина первой в СССР системе автоматического проектирования (АСП-1) в 1968–1969 гг. было проведено комплексное проектирование крупной ЭВМ третьего поколения.

В 1969 г. под его научным руководством и по его инициативе проводился Первый всесоюзный семинар по автоматизированному проектированию ЭВМ, в котором принял участие практически весь круг ведущих отечественных специалистов, были обсуждены и сформулированы важнейшие научные и практические проблемы в этой области.

В 1975–1977 гг. Н.Я. Матюхин в составе созданной по поручению СМ СССР прогнозной комиссии по проблемам автоматизации проектирования руководил разработкой раздела, посвященного САПР в радиоэлектронике, где им лично были разработаны основные классификационные характеристики САПР, сформулированы тенденции развития и основные проблемы в этой области на период 1980–1985 гг. Проблемные доклады Матюхина на Всесоюзных научных конференциях и семинарах по автоматизации проектирования неизменно вызывали большой интерес у специалистов, работающих в этой области.

Им написано около ста научных работ (в том числе семь изобретений). В 1980 г. за высокие трудовые заслуги он был награжден орденом Трудового Красного Знамени.

«В личной жизни, в кругу сослуживцев, друзей, семьи Николай Яковлевич проявлял себя как очень добрый, скромный, внимательный человек, преданный друзьям, семье, своим детям, — вспоминает его жена Т.М. Александриди. — По характеру он был очень эмоциональным и увлекающимся человеком, умевшим зажечь всех окружающих своими идеями. Это относится как к работе, так и к занятиям в свободное время, например, спорту, развлечениям в кругу друзей или путешествиям.

Любимым увлечением Николая Яковлевича в свободное время было занятие спортом, но, конечно, по-любительски. Летом, в отпускное время — байдарочные походы с семьей, друзьями по рекам средней полосы России. Были путешествия по рекам Урала, Калининской, Вологодской и др. областей. Иногда путешествия совершались на автомашине или велосипеде. В зимнее время любимым отдыхом Николая Яковлевича было катанье на горных лыжах. Несмотря на то, что Николай Яковлевич „встал“ на горные лыжи очень поздно, примерно в 40 лет, у него выявились очень хорошие способности, и он достиг весьма приличного для любителя уровня.

Наша семья всегда была очень дружной, и у родителей и детей оказались общие интересы, как на работе, так и вне ее. Сын — Борис — окончил МЭИ по вычислительной технике, защитил в 1981 г. кандидатскую диссертацию по проблематике автоматического синтеза тестов. Дочь — Екатерина — окончила МАИ по радиоэлектронике, защитила в 1989 году кандидатскую диссертацию в области микропроцессорной техники».

Тамара Миновна Александриди тяжело переживала безвременную смерть мужа, наступившую 4 марта 1984 г, и свято хранит память о любимом человеке.

Я сердечно благодарю Т.М. Александриди и ее коллег за помощь в подготовке книги.

Секреты послевоенных лет

Материалы (ранее бывшие секретными) о разработках, выполненных под руководством Н.Я. Матюхина в НИИ автоматической аппаратуры, передал автору А.В. Залкинд.

«В 1957 г. мы решили перейти в НИИ автоматической аппаратуры Минрадиопрома, чтобы разрабатывать советский вариант СЭЙДЖа (так называлась американская система ПВО. — Прим. авт.). Мы — это группа в составе, Н.Я. Матюхина — лидера группы, А.Б. Залкинда, О.В. Росницкого, А.И. Щурова.

НИИ был создан в 1956 году. Директором НИИ и Генеральным конструктором намеченной к разработке системы ПВО был Г.Л. Шорин. В 1958 году наша группа подключилась к работам на макетном стенде „Земля“.

В системе „Земля“ все начиналось с телеграфных аппаратов. Информация о „движущихся объектах“ в координатах сетки ПВО передавалась по телеграфной сети. Телеграфисты, оформляя сообщения, передавали их операторам цифровых пультов, которые кодировали дискретные данные. Данные с пультов поступали на аппаратуру пересчета данных (АПД), где на выходе формировались прямоугольные координаты и курс объектов. Выходные данные хранились на магнитном барабане (МБ), выполняющем роль буферного узла. С МБ данные поступали на ЭВМ для вторичной обработки и на рабочее место (РМ), использующее специальную ЭЛТ типа „характрон“. Буквы, цифры и логические знаки воспроизводились методом маскирования луча. „Кнюпфельное“ механическое устройство с кнопкой позволяло выдавать на ЭЛТ формуляры с привязкой их к отметкам о самой цели.

Вся аппаратура стенда была настроена в кратчайшие сроки, и Государственная комиссия завершила работу во II квартале 1960 г. Выводы были отрицательными из-за низких надежностных и габаритно-массовых характеристик всех узлов, содержащих радиолампы.

Было принято решение о полном запрете радиоламп в наших дальнейших разработках.

Упоминание о стенде „Земля“ (с чего мы все начинали в 1960 г.) сделано для того, чтобы более рельефно представить последующие успехи нашего коллектива. Прошло всего 15 лет, и за спиной института уже была действующая глобальная сеть из более чем 20 региональных центров коммутации сообщений ЦКС. Эта сеть ЦКС обеспечивает кругологодично почти „бессбойный“ обмен информацией в системе ПВО.

Работа над первой отечественной полупроводниковой ЭВМ „Тетива“ для этой системы началась с макетной проработки в 1960 году.

„Тетива“ была первой отечественной ЭВМ, где в устройстве управления использовалась микропрограмма, хранящаяся в матрице ДЗУ. Позже микропрограммное управление было применено в ЭВМ НАИРИ (1964 г.), в ЭВМ МИР и ЕС-1020.

Арифметическое устройство (АУ) „Тетивы“ использовало только прямые коды операндов. Такое АУ было более дорогим по оборудованию, чем известные, но самым быстрым и самоконтролируемым.

Программа „Тетивы“ хранилась в ДЗУ. Этим обеспечивалось безотказное ее выполнение. Производство ЭВМ „Тетива“ было освоено заводом в Минске. В 1962 г. восемь машин были установлены на объектах. Первичный ввод информации в „Тетиву“ выполнялся с помощью „кнюпфельной“ кнопки для съема с экрана ЭЛТ характеристик первичной обстановки — координат объектов. Программа в ЭВМ обеспечивала их полуавтоматическое сопровождение.

Для обеспечения постоянной круглосуточной работы системы ПВО был подготовлен и использован „безотказный ВК“ на базе 2-х „Тетив“. При любых сбоях в ВК переключались сами „Тетивы“.

Более 30 лет (бессменно) трудился комплекс и даже „засек“ в 1986 г. пролет Руста…

Еще не кончился этап освоения системы ПВО на основе „Тетивы“, как полным ходом начались макетные работы над первым возимым вариантом ЭВМ 5Э63 и 5Э63.1. В 1967 году после успешных испытаний в Капустином Яре (военный полигон под Астраханью. — Прим. авт.) машины были запущены в серийное производство. С тех пор выпущены многие их сотни.

В 1967 г. была начата работа над первой ЕС-подобной ЭВМ в блочном исполнении — 5Э76. Первая ЭВМ 5Э76 была использована в составе комплекса из 6-ти ЭВМ.

В 1969 г. начались проработки АСУ „глобального“ масштаба — от берега балтийского до берега тихоокеанского… Главным в ней было обеспечение связи через ЦКС и постоянная круглосуточная (круглогодичная) работа в автоматическом режиме. Имевшиеся в составе ЦКС рабочие места операторов хотя и реализовали связь „человек-машина“, но их наличие в системе было не обязательным.

Исходя из ограниченных площадей объектов ЦКС и требований надежности, для них был выбран 2-машинный ВК: из 2-х ЭВМ 5Э76-Б (модернизированная 5Э76). Новый ВК именовался 65с180. Всего за период 1972–1992 гг. было изготовлено 32 машины 65с180».

Основные характеристики перечисленных выше ЭВМ и ВК приведены в табл. 1. Все они были созданы при непосредственном руководстве со стороны Н.Я. Матюхина, его соратниками и учениками (В.П. Харитонов, А.В. Тамошинский, А.Л. Залкинд, Г.С. Вилыпанский, Г.Г. Карпов, Ю.С. Бравый, В.А. Лущекин, Л.А. Шифрина, В.А. Бирюков). Сейчас это уже история…

За этими, казалось бы, скромными цифрами стоит огромный труд Н.Я. Матюхина, работавших с ним сотрудников, заводов, выпускавших созданные ЭВМ, организаций, разрабатывавших, устанавливающих и обслуживающих системы ПВО. Эта тема еще ждет своего автора…

Таблица 1
Второе рождение М-3

М-З стала одной из первых ЭВМ класса малых машин, подготовленной для серийного производства. Машина была настолько проста в изготовлении и эксплуатации, что ряд организаций смогли самостоятельно изготовить ее и наладить у себя по документации, выпущенной во ВНИИЭМ. В 1958 г. конструкторская документация, на ЭВМ М-З была передана Минскому заводу счетных машин для выпуска малой серии.

Так, по стечению обстоятельств, детище И.С.Брука и его ученика Матюхина, разработанное в Москве, стало выпускаться в Минске — на родине Брука.

Первая ЭВМ, выпущенная в сентября 1959 г., имела оперативное запоминающее устройство на магнитном барабане (2048 31-разрядных слов), что ограничило производительность до 30 операций в секунду, несмотря на арифметическое устройство параллельного действия.

Машины зарекомендовали себя весьма положительно, и поэтому было принято решение о их модернизации. К запоминающему устройству на магнитном барабане было добавлено ЗУ на ферритовых сердечниках, что повысило производительность до 1500 операций в секунду. Ранее выпущенные ЭВМ М-З были оснащены новым ЗУ.

Через год перед коллективом СКВ завода была поставлена задача создать новую более совершенную машину, недорогую, простую в наладке и эксплуатации, легко приспосабливаемую к потребностям заказчика. Такой стала ЭВМ «Минск-1» (главный конструктор Г.П. Ло-пато) — двухадресная машина производительностью 3000 операций в секунду. Конструктивно она была выполнена в виде автономных функционально законченных устройств. Простые логические схемы, агрегатная конструкция машины и огромный энтузиазм сотрудников СКВ и завода позволили завершить разработку в предельно сжатые сроки. Одновременно велась подготовка производства. Через 14 месяцев завод выпустил первую ЭВМ «Минск-1»!

Агрегатная конструкция машины позволяла сократить сроки наладки машин, значительно упрощала профилактические работы у пользователей, обеспечила быструю разработку ряда модификаций «Минск-1» по требованиям заказчиков: «Минск-11» (гл. конструктор В.Л. Салов) — для работы с каналами связи,

1961 г.; «Минск-12» (гл. конструктор В.Я. Симхес) — с увеличенными объемами запоминающих устройств, 1962 г.; «Минск-14» (гл. конструктор Л.И. Кабер-ник) — для работы с каналами связи с большими объемами запоминающих устройств, 1962 г.; «Минск-16» (гл. конструктор В.Т. Манжалей), — для обработки телеметрической информации с искусственных спутников Земли, 1962 г.).

ЭВМ «Минск-1» могла быть доведена у пользователя до любой из этих модификаций. Эти модели выпускались заводом в 1960–1964 годах и были самыми распространенными малыми ЭВМ первого поколения в бывшем

Советском Союзе. Они использовались в высших и средних учебных заведениях, НИИ и КБ, часть машин работала на заводах, где применялась главным образом для решения инженерно-технических задач.

В 1962 г. была завершена разработка ЭВМ «Минск-100» — для обработки дактилоскопических отпечатков (эксплуатировались в Минске и Ленинграде).

Одна машина «Минск-1» была установлена на научно-исследовательском судне «Сергей Вавилов» для обработки научных исследований непосредственно в плавании и вполне удовлетворительно работала в тропиках.

Машины М-3 и «Минск-1» стали родоначальниками двухадресных машин второго поколения, разработанных в Минске. Впервые в отечественной практике минчане освоили серийное производство оперативных запоминающих устройств на ферритовых сердечниках.

Успех в выпуске и использовании машин М-3 и «Минск-1» окрылил коллектив разработчиков. Был разработан проект технического задания на полупроводниковую ЭВМ «Минск-2». Госкомитет по радиоэлектронике СССР, которому послали его на согласование, ответил, что считает нецелесообразным заниматься разработкой новых машин в Минском СКВ, поскольку основная задача СКВ — разработка стендовой аппаратуры, совершенствование технологических процессов, сопровождение и модернизация ЭВМ, выпускаемых заводом.

Коллектив СКБ был уверен, что задача создания ЭВМ второго поколения ему по плечу и что он успешно ее выполнит. Создавшееся положение обсуждалось у Председателя Совнархоза БССР A.M. Тарасова. Он поддержал СКБ, утвердил ТЗ, обеспечил финансирование, и за два года ЭВМ «Минск-2» была разработана, сдана Государственной комиссии с высокой оценкой и в 1963 г. было начато ее производство. Это была первая в Советском Союзе серийная малая универсальная ЭВМ второго поколения (на полупроводниковых элементах), предназначенная для решения научных, инженерных и некоторых экономических задач для эксплуатации в вычислительных центрах, научно-исследовательских организациях, конструкторских бюро и промышленных предприятиях (главный конструктор В.В. Пржиялковский).

Машины второго поколения серии «Минск» делились на 2 группы. К первой относились «Минск-2», «Минск-22», «Минск-22 М» с базовой машиной «Минск-2».

Ко второй группе относились ЭВМ «Минск-23» и «Минск-32» (главный конструктор В.Я. Пыхтин). Помимо указанных основных моделей с целью расширения возможностей применения машин были созданы модификации «Минск-26» и «Минск-27», а также вычислительные комплексы из ЭВМ первой и второй групп.

Универсальная ЭВМ «Минск-22» (гл. конструктор В.К. Надененко) ориентирована на решение более широкого круга различных задач, что было достигнуто за счет развития и улучшения ряда параметров по сравнению с базовой моделью: вдвое увеличен объем оперативной памяти, в четыре раза — объем внешнего накопителя на магнитной ленте, расширен набор вводных и выводных устройств (фотосчитывающие механизмы ВСМ-ЗМ, ФС-5, перфоратор ленточный типа ПЛ-80; устройство печатающее алфавитно-цифровое АЦПУ-128-2 и др.); впервые в отечественной практике реализована возможность алфавитно-цифрового общения с человеком (прямой ввод, обработка, хранение и вывод алфавитно-цифровой информации); осуществлена простая и экономичная система прерывания программы, позволившая оптимизировать процесс вычислений. Внедрена в серийное производство в 1965 г. Некоторые недостатки структуры и логики. машины «Минск-22» были устранены в следующей модели «Минск-22 М» (гл. конструктор В.В. Пржиялковский): были подключены более производительные периферийные устройства, уменьшены габариты машины. Все это позволило на 25–30 % улучшить соотношение производительность — стоимость.